XTERM(1) X Window System XTERM(1)

NAME

xterm — terminal emulator for X

SYNOPSIS

xterm [—toolkitoption ...] [-option ...] [shell]

DESCRIPTION

The xterm program is a terminal emulator for the X Window System. It provides DEC VT102/VT220 and
selected features from higher-level terminals such as VT320/VT420/VT520 (VTxxx). It also provides
Tektronix 4014 emulation for programs that cannot use the window system directly. If the underlying
operating system supports terminal resizing capabilities (for example, the SIGWINCH signal in systems
derived from 4.3BSD), xterm will use the facilities to notify programs running in the window whenever it is
resized.

The VTxxx and Tektronix 4014 terminals each have their own window so that you can edit text in one and
look at graphics in the other at the same time. To maintain the correct aspect ratio (height/width), Tektronix
graphics will be restricted to the largest box with a 4014’s aspect ratio that will fit in the window. This box
is located in the upper left area of the window.

Although both windows may be displayed at the same time, one of them is considered the “active” window
for receiving keyboard input and terminal output. This is the window that contains the text cursor. The
active window can be chosen through escape sequences, the VT Options menu in the VTxxx window, and
the Tek Options menu in the 4014 window.

EMULATIONS

Xterm provides usable emulations of related DEC terminals:
* VT52 emulation is complete.

* VT102 emulation is fairly complete, but does not support autorepeat (because that would affect the
keyboard used by other X clients).

Double-size characters are displayed properly if your font server supports scalable bitmap fonts.
* VT220 emulation does not support soft fonts, it is otherwise complete.

* VT420 emulation (the default) supports controls for manipulating rectangles of characters as well as
left/right margins.

Xterm does not support some other features which are not suitable for emulation, e.g., two-sessions.
Terminal database (terminfo (5) or termcap (5)) entries that work with xterm include

an optional platform-specific entry (‘“xterm-new”),
“xterm”,

“vt1027,

“vt1007,

“ansi” and

“dumb”

Xterm automatically searches the terminal database in this order for these entries and then sets the “TERM”
variable (and the “TERMCAP” environment variable on a few older systems). The alternatives after
“xterm” are very old, from the late 1980s.

VT100 and VT102 emulations are commonly equated, though they actually differ. The VT102 provided
controls for inserting and deleting lines.

Similarly, “ansi” and “vt100” are often equated. These are not really the same. For instance, they use
different controls for scrolling (but xterm supports both). These features differ in an “ansi” terminal
description from xterm:

acsc
Pseudo-graphics (line-drawing) uses a different mapping.

Patch #403 2025-10-19 1

XTERM(1) X Window System XTERM(1)

xenl
Xterm wraps text at the right margin using the VT100 “newline glitch” behavior.

Because of the wrapping behavior, you would occasionally have to repaint the screen when using a text
editor with the “ansi” description.

You may also use descriptions corresponding to the various supported emulations such as “vt220” or
“vt420”, but should set the terminal emulation level with the decTerminalID resource.

On most systems, xterm will use the terminfo database. Some older systems use termcap. (The
“TERMCAP” environment variable is not set if xterm is linked against a terminfo library, since the
requisite information is not provided by the termcap emulation of terminfo libraries).

Many of the special xterm features may be modified under program control through a set of escape
sequences different from the standard VTxxx escape sequences (see Xterm Control Sequences).

The Tektronix 4014 emulation is also fairly good. It supports 12-bit graphics addressing, scaled to the
window size. Four different font sizes and five different lines types are supported. There is no write-
through or defocused mode support. The Tektronix text and graphics commands are recorded internally by
xterm and may be written to a file by sending the COPY escape sequence (or through the Tek Options
menu; see below). The name of the file will be

“COPYyyyy—MM-dd.hh:mm:ss”

where yyyy, MM, dd, hh, mm and ss are the year, month, day, hour, minute and second when the COPY
was performed (the file is created in the directory xterm is started in, or the home directory for a login
Xxterm).

Not all of the features described in this manual are necessarily available in this version of xterm. Some
(e.g., the non-VT220 extensions) are available only if they were compiled in, though the most commonly-
used are in the default configuration.

OTHER FEATURES
Xterm automatically highlights the text cursor when the pointer enters the window (selected) and
unhighlights it when the pointer leaves the window (unselected). If the window is the focus window, then
the text cursor is highlighted no matter where the pointer is.

In VTxxx mode, there are escape sequences to activate and deactivate an alternate screen buffer, which is
the same size as the display area of the window. When activated, the current screen is saved and replaced
with the alternate screen. Saving of lines scrolled off the top of the window is disabled until the normal
screen is restored. The usual terminal description for xterm allows the visual editor vi(1) to switch to the
alternate screen for editing and to restore the screen on exit. A popup menu entry makes it simple to switch
between the normal and alternate screens for cut and paste.

In either VTxxx or Tektronix mode, there are escape sequences to change the name of the windows.
Additionally, in VTxxx mode, xterm implements the window-manipulation control sequences from dtterm,
such as resizing the window, setting its location on the screen.

Xterm allows character-based applications to receive mouse events (currently button-press and release
events, and button-motion events) as keyboard control sequences. See Xterm Control Sequences for details.

OPTIONS
Because xterm uses the X Toolkit library, it accepts the standard X Toolkit command line options. Xterm
also accepts many application-specific options.

[T L)

By convention, if an option begins with a “+” instead of a “~”, the option is restored to its default value.

Most of the xterm options are actually parsed by the X Toolkit, which sets resource values, and overrides
corresponding resource-settings in your X resource files. Xterm provides the X Toolkit with a table of
options. A few of these are marked, telling the X Toolkit to ignore them (-help, —version, —class, —e, and
—into). After the X Toolkit has parsed the command-line parameters, it removes those which it handles,
leaving the specially-marked parameters for xterm to handle.

These options do not set a resource value, and are handled specially:

Patch #403 2025-10-19 2

XTERM(1) X Window System XTERM(1)

—version
This causes xterm to print a version number to the standard output, and then exit.

—help This causes xterm to print out a verbose message describing its options, one per line. The
message is written to the standard output. After printing the message, xterm exits. Xterm
generates this message, sorting it and noting whether a “—option” or a “+option” turns the feature
on or off, since some features historically have been one or the other. Xterm generates a concise
help message (multiple options per line) when an unknown option is used, e.g.,

xterm -z

If the logic for a particular option such as logging is not compiled into xterm, the help text for
that option also is not displayed by the —help option.

The —version and —help options are interpreted even if xterm cannot open the display, and are useful for
testing and configuration scripts. Along with —class, they are checked before other options. To do this,
xterm has its own (much simpler) argument parser, along with a table of the X Toolkit’s built-in list of
options.

Relying upon the X Toolkit to parse the options and associated values has the advantages of simplicity and
good integration with the X resource mechanism. There are a few drawbacks

* Xterm cannot tell easily whether a resource value was set by one of the external resource- or application-
defaults files, whether it was set using xrdb(1), or if it was set through the —xrm option or via some
directly relevant command-line option. Xterm sees only the end-result: a value supplied when creating
its widgets.

e Xterm does not know the order in which particular options and items in resource files are evaluated.
Rather, it sees all of the values for a given widget at the same time. In the design of these options, some
are deemed more important, and can override other options.

The X Toolkit uses patterns (constants and wildcards) to match resources. Once a particular pattern has
been used, it will not modify it. To override a given setting, a more-specific pattern must be used, e.g.,
replacing “*” with “.”. Some poorly-designed resource files are too specific to allow the command-line
options to affect the relevant widget values.

* In a few cases, the X Toolkit combines its standard options in ways which do not work well with xterm.
This happens with the color (—fg, —bg) and reverse (-rv) options. Xferm makes a special case of these
and adjusts its sense of “reverse” to lessen user surprise.

One parameter (after all options) may be given. That overrides xterm’s built-in choice of shell program:

» If the parameter is not a relative path, i.e., beginning with “./” or “../”, xterm looks for the file in the
user’s PATH. In either case, this check fails if xterm cannot construct an absolute path.

* If that check fails (or if no such parameter is given), xterm next checks the “SHELL” variable. If that
specifies an executable file, xterm will attempt to start that. However, xterm additionally checks if it is a
valid shell, and will unset “SHELL” if it is not.

» If “SHELL” is not set to an executable file, xterm tries to use the shell program specified in the user’s
password file entry. As before, xterm verifies if this is a valid shell.

* Finally, if the password file entry does not specify a valid shell, xterm uses /bin/sh.
The —e option cannot be used with this parameter since it uses all parameters following the option.

Xterm validates shell programs by finding their pathname in the text file /efc/shells. It treats the
environment variable “SHELL” specially because (like “TERM?”), xterm both reads and updates the
variable, and because the program started by xterm is not necessarily a shell.

The other options are used to control the appearance and behavior. Not all options are necessarily
configured into your copy of xterm:

Patch #403 2025-10-19 3

XTERM(1)

X Window System XTERM(1)

-132 Normally, the VT102 DECCOLM escape sequence that switches between 80 and 132 column
mode is ignored. This option causes the DECCOLM escape sequence to be recognized, and the
xterm window will resize appropriately.

—ah This option indicates that xterm should always highlight the text cursor. By default, xterm will
display a hollow text cursor whenever the focus is lost or the pointer leaves the window.

+ah This option indicates that xterm should do text cursor highlighting based on focus.

—ai This option disables active icon support if that feature was compiled into xterm. This is
equivalent to setting the vz/00 resource activelcon to “false”.

+ai This option enables active icon support if that feature was compiled into xterm. This is
equivalent to setting the v¢/00 resource activelcon to “true”.

—-aw This option indicates that auto-wraparound should be allowed, and is equivalent to setting the
vt100 resource autoWrap to “true”.

Auto-wraparound allows the cursor to automatically wrap to the beginning of the next line when
it is at the rightmost position of a line and text is output.

+aw This option indicates that auto-wraparound should not be allowed, and is equivalent to setting the
vt100 resource autoWrap to “false”.

—b number
This option specifies the size of the inner border (the distance between the outer edge of the
characters and the window border) in pixels. That is the v¢/00 internalBorder resource. The
default is “2”.

—barc This option, corresponding to the cursorBar resource, makes the cursor a bar instead of a box.

+barc This option, corresponding to the cursorBar resource, makes the cursor a box instead of a bar.

—baudrate number

Set the line-speed, used to test the behavior of applications that use the line-speed when
optimizing their output to the screen. The default is “38400”.

-bc Turn on text cursor blinking. This overrides the cursorBlink resource.
+bc Turn off text cursor blinking. This overrides the cursorBlink resource.
—bcef milliseconds

Set the amount of time text cursor is off when blinking via the cursorOffTime resource.

—bcen milliseconds

—bdc

+bdc

—cb

+cb

Set the amount of time text cursor is on when blinking via the cursorOnTime resource.

Set the vt100 resource colorBDMode to “false”, disabling the display of characters with bold
attribute as color.

Set the vt100 resource colorBDMode to “true”, enabling the display of characters with bold
attribute as color rather than bold.

Set the v¢100 resource cutToBeginningOfLine to “false”.

Set the v¢100 resource cutToBeginningOfLine to “true”.

—cc characterclassrange:valuel, ...]

This sets classes indicated by the given ranges for using in selecting by words (see
CHARACTER CLASSES and the charClass resource).

—cjk_width

Patch #403

Set the cjkWidth resource to “true”. When turned on, characters with East Asian Ambiguous
(A) category in UTR 11 have a column width of 2. Otherwise, they have a column width of 1.
This may be useful for some legacy CJK text terminal-based programs assuming box drawings
and others to have a column width of 2. It also should be turned on when you specify a TrueType
CJK double-width (bi-width/monospace) font either with —fa at the command line or faceName

2025-10-19 4

XTERM(1) X Window System XTERM(1)

resource. The default is “false”

+cjk_width
Reset the cjkWidth resource.

—class string
This option allows you to override xterm’s resource class. Normally it is “XTerm”, but can be set
to another class such as “UXTerm” to override selected resources.

X Toolkit sets the WM_CLASS property using the instance name and this class value.

—-cm This option disables recognition of ANSI color-change escape sequences. It sets the colorMode
resource to “false”.

+cm This option enables recognition of ANSI color-change escape sequences. This is the same as the
vt100 resource colorMode.

-cn This option indicates that newlines should not be cut in line-mode selections. It sets the
cutNewline resource to “false”.

+cn This option indicates that newlines should be cut in line-mode selections. It sets the cutNewline
resource to “true”.

—cr color
This option specifies the color to use for text cursor. The default is to use the same foreground
color that is used for text. It sets the cursorColor resource according to the parameter.

—-cu This option indicates that xterm should work around a bug in the more(1) program that causes it
to incorrectly display lines that are exactly the width of the window and are followed by a line
beginning with a tab (the leading tabs are not displayed). This option is so named because it was
originally thought to be a bug in the curses(3x) cursor motion package.

+cu This option indicates that xterm should not work around the more(1) bug mentioned above.

—-dc This option disables the escape sequence to change dynamic colors: the vt100 foreground and
background colors, its text cursor color, the pointer cursor foreground and background colors, the
Tektronix emulator foreground and background colors, its text cursor color and highlight color.
The option sets the dynamicColors option to “false”.

+dc This option enables the escape sequence to change dynamic colors. The option sets the
dynamicColors option to “true”.

—e program [arguments . .. |
This option specifies the program (and its command line arguments) to be run in the xterm
window. It also sets the window title and icon name to be the basename of the program being
executed if neither —7 nor —n are given on the command line.

NOTE: This must be the last option on the command line.

—en encoding
This option determines the encoding on which xterm runs. It sets the locale resource. Encodings
other than UTF-8 are supported by using [uit. The —lc option should be used instead of —en for
systems with locale support.

—fa pattern
This option sets the pattern for fonts selected from the FreeType library if support for that library
was compiled into xterm. This corresponds to the faceName resource. When a CJK double-
width font is specified, you also need to turn on the cjkWidth resource.

If you specify both —fa and the X Toolkit option —fn, the —fa setting overrides the latter.

See also the renderFont resource, which combines with this to determine whether FreeType
fonts are initially active.

Patch #403 2025-10-19 5

XTERM(1) X Window System XTERM(1)

—fb font This option specifies a font to be used when displaying bold text. It sets the boldFont resource.

This font must be the same height and width as the normal font, otherwise it is ignored. If only
one of the normal or bold fonts is specified, it will be used as the normal font and the bold font
will be produced by overstriking this font.

See also the discussion of boldMode and alwaysBoldMode resources.

—fbb This option indicates that xterm should compare normal and bold fonts bounding boxes to ensure
they are compatible. It sets the freeBoldBox resource to “false”.

+fbb This option indicates that xterm should not compare normal and bold fonts bounding boxes to
ensure they are compatible. It sets the freeBoldBox resource to “true”.

—fbx This option indicates that xterm should not assume that the normal and bold fonts have VT100
line-drawing characters. If any are missing, xterm will draw the characters directly. It sets the
forceBoxChars resource to “false”.

+fbx This option indicates that xterm should assume that the normal and bold fonts have VT100 line-
drawing characters. It sets the forceBoxChars resource to “true”.

—fc fontchoice
Specify the initial font chosen from the font menu. The option value corresponds to the
initialFont resource.

—fd pattern
This option sets the pattern for double-width fonts selected from the FreeType library if support
for that library was compiled into xterm. This corresponds to the faceNameDoublesize resource.

—fi font This option sets the font for active icons if that feature was compiled into xterm.
See also the discussion of the iconFont resource.

—fs size This option sets the pointsize for fonts selected from the FreeType library if support for that
library was compiled into xterm. This corresponds to the faceSize resource.

—fullscreen
This option indicates that xterm should ask the window manager to let it use the full-screen for
display, e.g., without window decorations. It sets the fullscreen resource to “true”.

+fullscreen
This option indicates that xterm should not ask the window manager to let it use the full-screen
for display. It sets the fullscreen resource to “false”.

—fw font This option specifies the font to be used for displaying wide text. By default, it will attempt to
use a font twice as wide as the font that will be used to draw normal text. If no double-width font
is found, it will improvise, by stretching the normal font. This corresponds to the wideFont
resource.

—fwb font
This option specifies the font to be used for displaying bold wide text. By default, it will attempt
to use a font twice as wide as the font that will be used to draw bold text. If no double-width font
is found, it will improvise, by stretching the bold font. This corresponds to the wideBoldFont
resource.

—fx font This option specifies the font to be used for displaying the preedit string in the “OverTheSpot”
input method.

See also the discussion of the ximFont resource.

—hc color

(see —selbg).

—hf This option indicates that HP function key escape codes should be generated for function keys. It
sets the hpFunctionKeys resource to “true”.

Patch #403 2025-10-19 6

XTERM(1)

+hf

+hm

—hold

+hold

+ie

+im

X Window System XTERM(1)

This option indicates that HP function key escape codes should not be generated for function
keys. It sets the hpFunctionKeys resource to “false”.

Tells xterm to use highlightTextColor and highlightColor to override the reversed
foreground/background colors in a selection. It sets the highlightColorMode resource to “true”.

Tells xterm not to use highlightTextColor and highlightColor to override the reversed
foreground/background colors in a selection. It sets the highlightColorMode resource to “false”.

Turn on the hold resource, i.e., xterm will not immediately destroy its window when the shell
command completes. It will wait until you use the window manager to destroy/kill the window,
or if you use the menu entries that send a signal, e.g., HUP or KILL.

Turn off the hold resource, i.e., xterm will immediately destroy its window when the shell
command completes.

Turn on the ptylInitialErase resource, i.e., use the pseudo-terminal’s sense of the stty(1) erase
value.

Turn off the ptylInitialErase resource, i.e., set the stfy erase value using the kb string from the
termcap entry as a reference, if available.

Turn on the useInsertMode resource, which forces use of insert mode by adding appropriate
entries to the TERMCAP environment variable. (This option is ignored on most systems,
because TERMCAP is not used).

Turn off the useInsertMode resource.

—into windowld

—itc

+ite

-

+k8

Given an X window identifier (an integer, which can be hexadecimal, octal or decimal according
to whether it begins with "0x", "0" or neither), xterm will reparent its top-level shell widget to
that window. This is used to embed xterm within other applications.

For instance, there are scripts for Tcl/Tk and Gtk which can be used to demonstrate the feature.
When using Gtk, there is a limitation of that toolkit which requires that xterm’s allowSendEvents
resource is enabled.

Set the v¢100 resource colorITMode to “false”, disabling the display of characters with italic
attribute as color.

Set the vt100 resource colorITMode to “true”, enabling the display of characters with italic
attribute as color rather than italic.

This option indicates that xterm should do jump scrolling. It corresponds to the jumpScroll
resource. Normally, text is scrolled one line at a time; this option allows xterm to move multiple
lines at a time so that it does not fall as far behind. Its use is strongly recommended since it
makes xterm much faster when scanning through large amounts of text. The VT100 escape
sequences for enabling and disabling smooth scroll as well as the VT Options menu can be used
to turn this feature on or off.

This option indicates that xterm should not do jump scrolling.

When doing jump-scrolling or related indexing, e.g., carriage returns, xterm will defer flushing
screen-updates, to improve speed. This corresponds to the fastScroll resource.

When doing jump-scrolling or related indexing, e.g., carriage returns, xterm will not defer
flushing screen-updates, to improve speed. This corresponds to the fastScroll resource.

This option sets the allowC1Printable resource. When allowC1Printable is set, xterm overrides
the mapping of C1 control characters (code 128—159) to treat them as printable.

This option resets the allowC1Printable resource.

-kt keyboardtype

Patch #403

This option sets the keyboardType resource. Possible values include: “unknown”, “default”,
“legacy”, “hp”, “sco”, “sun”, “tcap” and “vt220".

2025-10-19 7

XTERM(1)

+l

+lc

=lcc path

X Window System XTERM(1)

The value “unknown”, causes the corresponding resource to be ignored.
The value “default”, suppresses the associated resources

hpFunctionKeys,
scoFunctionKeys,
sunFunctionKeys,
tcapFunctionKeys,
oldXtermFKeys and
sunKeyboard,

using the Sun/PC keyboard layout.
Turn logging on, unless disabled by the logInhibit resource.

Some versions of xterm may have logging enabled. However, normally logging is not supported,
due to security concerns in the early 1990s. That was a problem in X11R4 xterm (1989) which
was addressed by a patch to X11RS late in 1993. X11R6 included these fixes. The older version
(when running with root privilege) would create the log file using root privilege. The reason why
xterm ran with root privileges was to open pseudo-terminals. Those privileges are now needed
only on very old systems: Unix98 pseudo-terminals made the BSD scheme unnecessary.

Unless overridden by the —If option or the logFile resource:

TR L

* If the filename is , then logging is sent to the standard output.

* Otherwise a filename is generated, and the log file is written to the directory from which xterm
is invoked.

* The generated filename is of the form
XtermLog . XXXXXX

or

Xterm. log.hostname.yyyy.mm.dd.hh.mm.ss. XXXXXX
depending on how xterm was built.
Turn logging off.

Turn on support of various encodings according to the users’ locale setting, i.e., LC_ALL,
LC_CTYPE, or LANG environment variables. This is achieved by turning on UTF-8 mode and
by invoking luit for conversion between locale encodings and UTF-8. (luit is not invoked in
UTF-8 locales.) This corresponds to the locale resource.

The actual list of encodings which are supported is determined by uit. Consult the /uit manual
page for further details.

See also the discussion of the —u8 option which supports UTF-8 locales.

Turn off support of automatic selection of locale encodings. Conventional 8bit mode or, in
UTF-8 locales or with —u8 option, UTF-8 mode will be used.

File name for the encoding converter from/to locale encodings and UTF-8 which is used with —lc
option or locale resource. This corresponds to the localeFilter resource.

—leftbar Force scrollbar to the left side of VT100 screen. This is the default, unless you have set the

rightScrollBar resource.

—If filename

Patch #403

TR L

Specify the log filename. This sets the logFile resource. If set to
standard output. See the -1 option.

, xterm writes its log to the

2025-10-19 8

XTERM(1) X Window System XTERM(1)

-Is This option indicates that the shell that is started in the xterm window will be a login shell (i.e.,
the first character of argv[0] will be a dash, indicating to the shell that it should read the user’s
Jlogin or .profile).

The -Is flag and the loginShell resource are ignored if —e is also given, because xterm does not
know how to make the shell start the given command after whatever it does when it is a login
shell — the user’s shell of choice need not be a Bourne shell after all. Also, xterm —e is supposed
to provide a consistent functionality for other applications that need to start text-mode programs
in a window, and if loginShell were not ignored, the result of “/.profile might interfere with that.

If you do want the effect of —Is and —e simultaneously, you may get away with something like
xterm —-e /bin/bash -1 -c "my command here"

Finally, —Is is not completely ignored, because xterm —Is —e does write a wtmp entry (if
configured to do so), whereas xterm —e does not.

+Is This option indicates that the shell that is started should not be a login shell (i.e., it will be a
normal “subshell”).

—maximized
This option indicates that xterm should ask the window manager to maximize its layout on
startup. This corresponds to the maximized resource.

Maximizing is not the reverse of iconifying; it is possible to do both with certain window
managers.

+maximized
This option indicates that xterm should ask the window manager to not maximize its layout on
startup.

-mb This option indicates that xterm should ring a margin bell when the user types near the right end
of a line.

+mb This option indicates that margin bell should not be rung.

—mc milliseconds
This option specifies the maximum time between multi-click selections.

—-mesg Turn off the messages resource, i.e., disallow write access to the terminal.
+mesg Turn on the messages resource, i.e., allow write access to the terminal.

—-mk_width
Set the mkWidth resource to “true”. This makes xterm use a built-in version of the wide-
character width calculation. The default is “false”

+mk_width
Reset the mkWidth resource.

—ms color
This option specifies the color to be used for the pointer cursor. The default is to use the
foreground color. This sets the pointerColor resource.

—nb number
This option specifies the number of characters from the right end of a line at which the margin
bell, if enabled, will ring. The default is “10”.

—nomap
This option disables the initial mapping of the terminal window. Mapping an X window makes it
visible if it is managed. The default is “false” because xterm’s window is normally displayed on
startup.

After startup, an unmapped xterm window can be mapped by identifying its window-id, e.g.,
using xwininfo(1) or xlsclients(1), and then employing another program such as xdotool(1) to
ask the window manager to make it visible.

Patch #403 2025-10-19 9

XTERM(1)

+nomap

X Window System XTERM(1)

If the xterm window is visible (i.e., mapped), xterm’s menus and actions (i.e., set—visibility)
allow one to select whether the VT100 or Tek4014 windows should be displayed.

This option enables the initial mapping of the terminal window. This is the default behavior.

—nul This option disables the display of underlining.

+nul This option enables the display of underlining.

-pc This option enables the PC-style use of bold colors (see boldColors resource).

+pc This option disables the PC-style use of bold colors.

—pf font This option specifies the font to be used for the pointer. The corresponding resource name is
pointerFont. The resource value default is cursor.

—pob This option indicates that the window should be raised whenever a Control-G is received.

+pob This option indicates that the window should not be raised whenever a Control-G is received.

—report—charclass
Print a report to the standard output showing information about the character-classes which can
be altered using the charClass resource.

—report—colors
Print a report to the standard output showing information about colors as xterm allocates them.
This corresponds to the reportColors resource.

—report—fonts
Print a report to the standard output showing information about fonts which are loaded. This
corresponds to the reportFonts resource.

—report—icons
Print a report to the standard output showing information about pixmap-icons which are loaded.
This corresponds to the reportIcons resource.

—report—xres
Print a report to the standard output showing the values of boolean, numeric or string X resources
for the VT100 widget when initialization is complete. This corresponds to the reportXRes
resource.

—rightbar
Force scrollbar to the right side of VT100 screen.

-rve This option disables the display of characters with reverse attribute as color.

+rve This option enables the display of characters with reverse attribute as color.

-rw This option indicates that reverse-wraparound should be allowed. This allows the cursor to back
up from the leftmost column of one line to the rightmost column of the previous line. This is
very useful for editing long shell command lines and is encouraged. This option can be turned on
and off from the VT Options menu.

+rw This option indicates that reverse-wraparound should not be allowed.

-s This option indicates that xterm may scroll asynchronously, meaning that the screen does not
have to be kept completely up to date while scrolling. This allows xterm to run faster when
network latencies are very high and is typically useful when running across a very large internet
or many gateways.

+s This option indicates that xterm should scroll synchronously.

—Samename

Patch #403

Does not send title and icon name change requests when the request would have no effect: the
name is not changed. This has the advantage of preventing flicker and the disadvantage of
requiring an extra round trip to the server to find out the previous value. In practice this should

2025-10-19 10

XTERM(1)

X Window System XTERM(1)

never be a problem.

+samename

—-sb

+sb

Always send title and icon name change requests.

This option indicates that some number of lines that are scrolled off the top of the window should
be saved and that a scrollbar should be displayed so that those lines can be viewed. This option
may be turned on and off from the VT Options menu.

This option indicates that a scrollbar should not be displayed.

—selbg color

This option specifies the color to use for the background of selected text. If not specified, reverse
video is used. See the discussion of the highlightColor resource.

—selfg color

—sf

+sf

This option specifies the color to use for selected text. If not specified, reverse video is used. See
the discussion of the highlightTextColor resource.

This option indicates that Sun function key escape codes should be generated for function keys.

This option indicates that the standard escape codes should be generated for function keys.

—sh number

+sk

scale line-height values by the given number. See the discussion of the scaleHeight resource.

This option indicates that output to a window should not automatically reposition the screen to
the bottom of the scrolling region. This option can be turned on and off from the VT Options
menu.

This option indicates that output to a window should cause it to scroll to the bottom.

This option indicates that pressing a key while using the scrollbar to review previous lines of text
should cause the window to be repositioned automatically in the normal position at the bottom of
the scroll region.

This option indicates that pressing a key while using the scrollbar should not cause the window to
be repositioned.

—sl number

Patch #403

This option specifies the number of lines to save that have been scrolled off the top of the screen.
This corresponds to the saveLines resource. The default is “1024”.

This option, corresponding to the sessionMgt resource, indicates that xterm should set up session
manager callbacks.

This option indicates that xterm should not set up session manager callbacks.

This option indicates that Sun/PC keyboard should be assumed, providing mapping for keypad
“+”to “,”, and CTRL-F1 to F13, CTRL-F2 to F14, etc.

This option indicates that the standard escape codes should be generated for keypad and function
keys.

This option indicates that xterm should start in Tektronix mode, rather than in VTxxx mode.
Switching between the two windows is done using the “Options” menus.

Terminal database (ferminfo (S) or termcap (5)) entries that work with xterm are:

“tek4014”,
“tek40157,
“tek4012”,
“tek4013”,
“tek4010”, and
“dumb”.

2025-10-19 11

XTERM(1) X Window System XTERM(1)

Xterm automatically searches the terminal database in this order for these entries and then sets the
“TERM” variable (and the “TERMCAP” environment variable, if relevant).

+t This option indicates that xterm should start in VTxxx mode.

—-tb This option, corresponding to the toolBar resource, indicates that xterm should display a toolbar
(or menubar) at the top of its window. The buttons in the toolbar correspond to the popup menus,
e.g., control/left/mouse for Main Options.

+tb This option indicates that xterm should not set up a toolbar.

—ti term_id
Specify the name used by xterm to select the correct response to terminal ID queries. It also
specifies the emulation level, used to determine the type of response to a DA control sequence.
Valid values include vt52, vt100, vt101, vt102, vt220, and vt240 (the “vt” is optional). The
default is “vt420”. The term_id argument specifies the terminal ID to use. (This is the same as
the decTerminallD resource).

—tm string
This option specifies a series of terminal setting keywords followed by the characters that should
be bound to those functions, similar to the stty(1) program. The keywords and their values are
described in detail in the ttyModes resource.

—tn name
This option specifies the name of the terminal type to be set in the TERM environment variable.
It corresponds to the termName resource. This terminal type must exist in the terminal database
(termcap or terminfo, depending on how xterm is built) and should have /i# and co# entries. If
the terminal type is not found, xterm uses the built-in list “xterm”, “vt102”, etc.

-u8 This option sets the utf8 resource. When utf8 is set, xterm interprets incoming data as UTF-8.
This sets the wideChars resource as a side-effect, but the UTF-8 mode set by this option prevents
it from being turned off. If you must turn UTF-8 encoding on and off, use the —we option or the
corresponding wideChars resource, rather than the —u8 option.

This option and the utf8 resource are overridden by the —lIc and —en options and locale resource.
That is, if xterm has been compiled to support luit, and the locale resource is not “false” this
option is ignored. We recommend using the —lc¢ option or the “locale: true” resource in UTF-8
locales when your operating system supports locale, or —en UTF-8 option or the
“locale: UTF-8" resource when your operating system does not support locale.

+u8 This option resets the utf8 resource.

-uc This option, corresponding to the cursorUnderLine resource, makes the cursor underlined
instead of a box.

+uc This option m, corresponding to the cursorUnderLine resource, makes the cursor a box instead
of underlined.

—ulc This option disables the display of characters with underline attribute as color rather than with
underlining.

+ulc This option enables the display of characters with underline attribute as color rather than with
underlining.

—ulit This option, corresponding to the italicULMode resource, disables the display of characters with
underline attribute as italics rather than with underlining.

+ulit This option, corresponding to the italicULMode resource, enables the display of characters with
underline attribute as italics rather than with underlining.

—ut This option indicates that xterm should not write a record into the system utmp log file.

+ut This option indicates that xterm should write a record into the system utmp log file.

Patch #403 2025-10-19 12

XTERM(1)

+wce

+wf

X Window System XTERM(1)

This option indicates that a visual bell is preferred over an audible one. Instead of ringing the
terminal bell whenever a Control-G is received, the window will be flashed.

This option indicates that a visual bell should not be used.
This option sets the wideChars resource.

When wideChars is set, xterm maintains internal structures for 16-bit characters. If xterm is not
started in UTF-8 mode (or if this resource is not set), initially it maintains those structures to
support 8-bit characters. Xterm can later be switched, using a menu entry or control sequence,
causing it to reallocate those structures to support 16-bit characters.

The default is “false”.
This option resets the wideChars resource.

This option indicates that xterm should wait for the window to be mapped the first time before
starting the subprocess so that the initial terminal size settings and environment variables are
correct. It is the application’s responsibility to catch subsequent terminal size changes.

This option indicates that xterm should not wait before starting the subprocess.

—ziconbeep percent

—Scen

Old Options

Same as zIconBeep resource. If percent is non-zero, xterms that produce output while iconified
will cause an XBell sound at the given volume and have “***” prepended to their icon titles.
Most window managers will detect this change immediately, showing you which window has the
output. (A similar feature was in x10 xterm.)

This option indicates that this window should receive console output. This is not supported on all
systems. To obtain console output, you must be the owner of the console device, and you must
have read and write permission for it. If you are running X under xdm on the console screen you
may need to have the session startup and reset programs explicitly change the ownership of the
console device in order to get this option to work.

This option allows xterm to be used as an input and output channel for an existing program and is
sometimes used in specialized applications. The option value specifies the last few letters of the
name of a pseudo-terminal to use in slave mode, plus the number of the inherited file descriptor.
If the option contains a *“/” character, that delimits the characters used for the pseudo-terminal
name from the file descriptor. Otherwise, exactly two characters are used from the option for the
pseudo-terminal name, the remainder is the file descriptor. Examples (the first two are equivalent
since the descriptor follows the last “/”):

-S/dev/pts/123/45
-S123/45
—Sab34

Note that xterm does not close any file descriptor which it did not open for its own use. It is
possible (though probably not portable) to have an application which passes an open file
descriptor down to xterm past the initialization or the —S option to a process running in the xterm.

The following command line arguments are provided for compatibility with older versions. They may not
be supported in the next release as the X Toolkit provides standard options that accomplish the same task.

Y0 geom

#geom

=T string

Patch #403

This option specifies the preferred size and position of the Tektronix window. It is shorthand for
specifying the “tekGeometry” resource.

This option specifies the preferred position of the icon window. It is shorthand for specifying the

“iconGeometry” resource.

This option specifies the title for xterm’s windows. It is equivalent to —title.

2025-10-19 13

XTERM(1) X Window System XTERM(1)

—-n string
This option specifies the icon name for xterm’s windows. It is shorthand for specifying the
“iconName” resource. Note that this is not the same as the X Toolkit option —name. The default
icon name is the application name.

If no suitable icon is found, xterm provides a compiled-in pixmap.
X Toolkit sets the WM_ICON_NAME property using this value.

-r This option indicates that reverse video should be simulated by swapping the foreground and
background colors. It is equivalent to —rv.

—w number
This option specifies the width in pixels of the border surrounding the window. It is equivalent to
—borderwidth or —bw.

X Toolkit Options
The following standard X Toolkit command line arguments are commonly used with xterm:

=bd color
This option specifies the color to use for the border of the window. The corresponding resource
name is borderColor. Xterm uses the X Toolkit default, which is “XtDefaultForeground”.

Xterm’s VT100 window has two borders: the inner border internalBorder and the outer border
borderWidth, managed by the X Toolkit.

Normally xterm fills the inner border using the VT100 window’s background color. If the
colorInnerBorder resource is enabled, then xterm may fill the inner border using the
borderColor resource.

-bg color
This option specifies the color to use for the background of the window. The corresponding
resource name is background. The default is “XtDefaultBackground”.

—bw number
This option specifies the width in pixels of the border surrounding the window.

This appears to be a legacy of older X releases. It sets the borderWidth resource of the shell
widget, and may provide advice to your window manager to set the thickness of the window
frame. Most window managers do not use this information. See the —b option, which controls
the inner border of the xterm window.

—display display
This option specifies the X server to contact; see X(7).
—fg color

This option specifies the color to use for displaying text. The corresponding resource name is
foreground. The default is “XtDefaultForeground”.

—fn font This option specifies the font to be used for displaying normal text. The corresponding resource
name is font. The resource value default is fixed.

Xterm’s —fn option accepts a comma-separated list like —fa, for the VT100 widget, using the first
bitmap font (and discarding additional fonts). However, other widgets (such as the toolbar) will
be confused by this and give a warning.

—font font
This is the same as —fn.

—geometry geometry
This option specifies the preferred size and position of the VTxxx window; see X(7).

The normal geometry specification can be suffixed with @ followed by a Xinerama screen
specification; it can be either g for the global screen (default), ¢ for the current screen or a screen
number.

Patch #403 2025-10-19 14

XTERM(1) X Window System XTERM(1)

—iconic
This option indicates that xterm should ask the window manager to start it as an icon rather than
as the normal window. The corresponding resource name is iconic.

—name name
This option specifies the application name under which resources are to be obtained, rather than
the default executable file name. Name should not contain “.” or “*” characters.

-Iv This option indicates that reverse video should be simulated by swapping the foreground and
background colors. The corresponding resource name is reverse Video.

+rv Disable the simulation of reverse video by swapping foreground and background colors.

—title string
This option specifies the window title string, which may be displayed by window managers if the
user so chooses. It is shorthand for specifying the “title” resource. The default title is the
command line specified after the —e option, if any, otherwise the application name.

X Toolkit sets the WM_NAME property using this value.

—Xrm resourcestring
This option specifies a resource string to be used. This is especially useful for setting resources
that do not have separate command line options.

X Toolkit accepts alternate names for a few of these options, e.g.,

—background

for “~bg”
—bordercolor

for “~=bc¢”
—borderwidth

for “—~bw”
—font

for “~fn”
—foreground

for “_fg’7
—reverse

for “—rv”

Abbreviated options also are supported, e.g., “—v” for “—version.”
Y PP g

RESOURCE CONVERTERS
Xterm understands all of the core X Toolkit resource names and classes. It also uses the X Toolkit resource
types (such as booleans, colors, fonts, integers, and strings) along with their respective converters. Those
resource types are not always sufficient:

Extended Booleans
X Toolkit boolean resources are useful, but having more than two values helps with configurability. Xterm
extends a (normally) boolean resource value by checking for additional values in several cases:

activelcon, cdXtraScroll, cursorBlink, eightBitMeta, renderFont, shiftEscape, tiXtraScroll, utf8,
utf8Fonts, and utf8Title
Comma-separated Lists
Xterm uses comma-separated lists for certain resources which denote features to enable or disable:
colorEvents, disallowedColorOps, disallowedFontOps, disallowedMouseOps,
disallowedPasteControls, disallowedTcapOps, and disallowed WindowOps

X Toolkit resource types do not include lists. Xterm uses a string for the resource, and parses it.

Patch #403 2025-10-19 15

XTERM(1)

X Window System

¢ The items in these lists are the features to enable or disable.

» List items are names (or decimal integers for disallowed WindowOps).

XTERM(1)

» List items are matched ignoring case. Xferm also allows wildcards in names, i.e., “*” and i.e., “?” as in
shell scripts.

* Each item can be prefixed with “™ (tilde) to indicate that the feature should be disabled rather than
enabled.

Xterm also uses comma-separated lists for a few other resources to set up tables. These match names
ignoring case, and can be abbreviated but do not support wildcards:

eightBitSelectTypes, omitTranslation, and utf8SelectTypes

Finally, these resources are comma-separated lists of data:

charClass, faceNameDoublesize, faceName, and font

Deferred resources
Xterm may defer processing a resource until it is needed. For example, font2 through font7 are loaded as

needed, to start faster. Again, the actual resource type is a string, parsed and used when needed.

RESOURCES

Application specific resources (e.g., “XTerm.NAME”) follow.

Application Resources

backarrowKeylsErase (class BackarrowKeylIsErase)
Tie the VTxxx backarrowKey and ptyInitialErase resources together by setting the DECBKM
state according to whether the initial erase character is a backspace (8) or delete (127) character.

Patch #403

A “false” value disables this feature. The default is “False”.

Here are tables showing how the initial settings for

* backarrowKeylIsErase (BKIE),

* backarrowKey (BK), and

¢ ptylInitialErase (PIE), along with the

 stty erase character ("H for backspace, *? for delete)

will affect DECBKM. First, xterm obtains the initial erase character:
* xterm’s internal value is "H

» xterm asks the operating system for the value which stty(1) shows
* the ttyModes resource may override erase

« if ptylInitialErase is false, xterm will look in the terminal database

Summarizing that as a table:

PIE stty termcap erase

false "H "H “H
false "H ~? ~?
false ~? "H "H
false ~? ~? ~?
true "H "H "H
true "H ~? "H
true "7 "H "7
true ~? ~? ~?

Using that erase character, xterm allows further choices:

2025-10-19

16

XTERM(1) X Window System XTERM(1)

* if backarrowKeylsErase is true, xterm uses the erase character for the initial state of
DECBKM

« if backarrowKeylIsErase is false, xterm sets DECBKM to 2 (internal). This ties together
backarrowKey and the control sequence for DECBKM.

* applications can send a control sequence to set/reset DECBKM control set
* the “Backarrow Key (BS/DEL)” menu entry toggles DECBKM

Summarizing the initialization details:

erase BKIE BK DECBKM result

~? false false 2 "H
~? false true 2 "7
~? true false 0 "7
~? true true 1 ~?
"H false false 2 "H
"H false true 2 "7
"H true false 0 "H
"H true true 1 "H

buffered (class Buffered)
Normally xterm is built with double-buffer support. This resource can be used to turn it on or off.
Setting the resource to “true” turns double-buffering on. The default value is “False”.

bufferedFPS (class Buffered FPS)
When xterm is built with double-buffer support, this gives the maximum number of
frames/second. The default is “40” and is limited to the range 1 through 100.

cursorTheme (class CursorTheme)
The Xcursor(7) library provides a way to change the pointer shape and size. The X11 library
uses this library to extend the font- and glyph-cursor calls used by applications such as xterm to
substitute external files for the built-in “core” cursors provided by X.

Xterm uses the pointerShape resource to select the X cursor shape. Most of the available sets of
cursor themes provide an incomplete set of “core” cursors (while possibly adding other cursors).
Because of this limitation, xterm disables the feature by default.

The cursor theme feature can be useful because X cursors are not scalable and on a high-
resolution display, the cursors are hard to find. Some of the cursor themes include larger cursors
to work around this limitation:

* The default core cursors are 8x8 pixels;
* Some cursor themes include cursors up to the X server limit of 64x64 pixels.

The default value is “none”. Other values (including “default”) are passed to the Xcursor library
to select a cursor theme, by setting the XCURSOR_THEME environment variable.

fullscreen (class Fullscreen)
Specifies whether or not xterm should ask the window manager to use a fullscreen layout on
startup. Xterm accepts either a keyword (ignoring case) or the number shown in parentheses:

false (0)
Fullscreen layout is not used initially, but may be later via menu-selection or control
sequence.

true (1)
Fullscreen layout is used initially, but may be disabled later via menu-selection or control
sequence.

Patch #403 2025-10-19 17

XTERM(1)

X Window System XTERM(1)

always (2)
Fullscreen layout is used initially, and cannot be disabled later via menu-selection or control
sequence.

never (3)
Fullscreen layout is not used, and cannot be enabled later via menu-selection or control
sequence.

The default is “false”.

hold (class Hold)

If true, xterm will not immediately destroy its window when the shell command completes. It
will wait until you use the window manager to destroy/kill the window, or if you use the menu
entries that send a signal, e.g., HUP or KILL. You may scroll back, select text, etc., to perform
most graphical operations. Resizing the display will lose data, however, since this involves
interaction with the shell which is no longer running.

hpFunctionKeys (class HpFunctionKeys)

Specifies whether or not HP function key escape codes should be generated for function keys.
The default is “false”, i.e., this feature is disabled.

The keyboardType resource is the preferred mechanism for selecting this mode.

iconGeometry (class IconGeometry)

Specifies the preferred size and position of the application when iconified. It is not necessarily
obeyed by all window managers.

iconHint (class IconHint)

Specifies an icon which will be added to the window manager hints. Xterm provides no default
value.

Set this resource to “none” to omit the hint entirely, using whatever the window manager may
decide.

If the iconHint resource is given (or is set via the —n option) xterm searches for a pixmap file
with that name, in the current directory as well as in /usr/share/pixmaps. if the resource does not
specify an absolute pathname. In each case, xterm adds “_48x48” and/or “.xpm” to the filename
after trying without those suffixes. If it is able to load the file, xterm sets the window manager
hint for the icon-pixmap. These pixmaps are distributed with xterm, and can optionally be
compiled-in:

e mini.xterm_16x16, mini.xterm_32x32, mini.xterm_48x48

e filled—xterm_16x16, filled—xterm_32x32, filled—xterm_48x48
e xterm_16x16, xterm_32x32, xterm_48x48

¢ xterm—color_16x16, xterm—color_32x32, xterm—color_48x48

In either case, xterm allows for adding a “_48x48” to specify the largest of the pixmaps as a
default. That is, “mini.xterm” is the same as “mini.xterm_48x48”.

If no explicit iconHint resource is given (or if none of the compiled-in names matches), xterm
uses “mini.xterm” (which is always compiled-in).

The iconHint resource has no effect on “desktop” files, including “panel” and “menu”. Those
are typically set via a “.desktop” file; xterm provides samples for itself (and the uxterm script).
The more capable desktop systems allow changing the icon on a per-user basis.

iconName (class IconName)

Patch #403

Specifies a label for xterm when iconified. Xterm provides no default value; some window
managers may assume the application name, e.g., “xterm”.

Setting the iconName resource sets the icon label unless overridden by zIconBeep or the control
sequences which change the window and icon labels.

2025-10-19 18

XTERM(1) X Window System XTERM(1)

keyboardType (class KeyboardType)
Enables one (or none) of the various keyboard-type resources: hpFunctionKeys,
scoFunctionKeys, sunFunctionKeys, tcapFunctionKeys, oldXtermFKeys and sunKeyboard.

EE RT3 EEINT3 ELINT3

The resource’s value should be one of the corresponding strings “hp”, “sco”, “sun”, “tcap”,
“legacy” or “vt220”, respectively.

The individual resources are provided for legacy support; this resource is simpler to use. Xterm
will use only one keyboard-type, but if multiple resources are set, it warns and uses the last one it
checks.

The default is “unknown”, i.e., none of the associated resources are set via this resource.

maxBufSize (class MaxBufSize)
Specify the maximum size of the input buffer. The default is “32768”. You cannot set this to a
value less than the minBufSize resource. It will be increased as needed to make that value evenly
divide this one.

On some systems you may want to increase one or both of the maxBufSize and minBufSize
resource values to achieve better performance if the operating system prefers larger buffer sizes.

maximized (class Maximized)
Specifies whether or not xterm should ask the window manager to maximize its layout on startup.
The default is “false”.

menuHeight (class MenuHeight)
Specifies the height of the toolbar, which may be increased by the X Toolkit Layout widget
depending upon the fontsize used. The default is “25”.

menulLocale (class MenuLocale)
Specify the locale used for character-set computations when loading the popup menus. Use this
to improve initialization performance of the Athena popup menus, which may load unnecessary
(and very large) fonts, e.g., in a locale having UTF-8 encoding. The default is “C” (POSIX).

To use the current locale (only useful if you have localized the resource settings for the menu
entries), set the resource to an empty string.

messages (class Messages)
Specifies whether write access to the terminal is allowed initially. See mesg(1). The default is
“true”.

minBufSize (class MinBufSize)
Specify the minimum size of the input buffer, i.e., the amount of data that xterm requests on each
read. The default is “4096”. You cannot set this to a value less than 64.

omitTranslation (class OmitTranslation)
Selectively omit one or more parts of xterm’s default translations at startup. The resource value is
a comma-separated list of keywords, which may be abbreviated:

default ignore (mouse) button-down events which were not handled by other translations

fullscreen
assigns a key-binding to the fullscreen() action.

keypress
assigns keypresses by default to the insert—seven—bit() and insert—eight—bit() actions.

paging assigns key bindings to the scroll-back() and scroll-forw() actions.

pointer assigns pointer motion and button events to the pointer—motion() and pointer—button()
actions respectively.

popup-menu
assigns mouse-buttons with the control modifier to the popup-menus.

Patch #403 2025-10-19 19

XTERM(1) X Window System XTERM(1)

reset assigns mouse-button 2 with the meta modifier to the clear—saved-lines action.

scroll-lock
assigns a key—binding to the scroll-lock() action.

block—select
an optional (compile-time) feature for supporting rectangular selections. By default, this
is bound to Meta button one.

select assigns mouse- and keypress-combinations to actions which manipulate the selection.

Xterm also uses these actions to capture mouse button and motion events which can be
manipulated with the mouse protocol control sequences. If the select translations are
omitted, then the pointer—motion and pointer—button handle these mouse protocol
control sequences instead.

shift—fonts
assigns key-bindings to larger—vt—font() and smaller—vt—font() actions.

wheel-mouse
assigns buttons 4 and 5 with different modifiers to the scroll-back() and scroll-forw()
actions.

ptyHandshake (class PtyHandshake)
If “true”, xterm will perform handshaking during initialization to ensure that the parent and child
processes update the utmp and stty(1) state.

See also waitForMap which waits for the pseudo-terminal’s notion of the screen size, and
ptySttySize which resets the screen size after other terminal initialization is complete. The
default is “true”.

ptylInitialErase (class PtyInitialErase)
If “true”, xterm will use the pseudo-terminal’s sense of the stty erase value. If “false”, xterm will
set the stty erase value to match its own configuration, using the kb string from the termcap entry
as a reference, if available.

In either case, the result is applied to the TERMCAP variable which xterm sets, if the system uses
TERMCAP.

See also the ttyModes resource, which may override this. The default is “False”.

ptySttySize (class PtySttySize)
If “true”, xterm will reset the screen size after terminal initialization is complete. This is needed
for some systems whose pseudo-terminals cannot propagate terminal characteristics. Where it is
not needed, it can interfere with other methods for setting the initial screen size, e.g., via window
manager interaction.

See also waitForMap which waits for a handshake-message giving the pseudo-terminal’s notion
of the screen size. The default is “false” on Linux and macOS systems, “true” otherwise.

reportColors (class ReportColors)
If true, xterm will print to the standard output a summary of colors as it allocates them. The
default is “false”.

reportFonts (class ReportFonts)
If true, xterm will print to the standard output a summary of each font’s metrics (size, number of
glyphs, etc.), as it loads them. The default is “false”.

reportlcons (class Reportlcons)
If true, xterm will print to the standard output a summary of each pixmap icon as it loads them.
The default is “false”.

reportXRes (class ReportXRes)
If true, xterm will print to the standard output a list of the boolean, numeric and string X
resources for the VT100 widget after initialization. The default is “false”.

Patch #403 2025-10-19 20

XTERM(1) X Window System XTERM(1)

sameName (class SameName)
If the value of this resource is “true”, xterm does not send title and icon name change requests
when the request would have no effect: the name is not changed. This has the advantage of
preventing flicker and the disadvantage of requiring an extra round trip to the server to find out
the previous value. In practice this should never be a problem. The default is “true”.

scaleHeight (class ScaleHeight)
Scale line-height values by the resource value, which is limited to “0.9” to “1.5”. The default
value is “1.0”,

While this resource applies to either bitmap or TrueType fonts, its main purpose is to help work
around incompatible changes in the Xft library’s font metrics. Xterm checks the font metrics to
find what the library claims are the bounding boxes for each glyph (character). However, some of
Xft’s features (such as the autohinter) can cause the glyphs to be scaled larger than the bounding
boxes, and be partly overwritten by the next row.

See useClipping for a related resource.

scoFunctionKeys (class ScoFunctionKeys)
Specifies whether or not SCO function key escape codes should be generated for function keys.
The default is “false”, i.e., this feature is disabled.

The keyboardType resource is the preferred mechanism for selecting this mode.

sessionMgt (class SessionMgt)
If the value of this resource is “true”, xterm sets up session manager callbacks for
XtNdieCallback and XtNsaveCallback. The default is “true”.

sunFunctionKeys (class SunFunctionKeys)
Specifies whether or not Sun function key escape codes should be generated for function keys.
The default is “false”, i.e., this feature is disabled.

LR

The keyboardType resource is the preferred mechanism for selecting this mode.

sunKeyboard (class SunKeyboard)

Xterm translates certain key symbols based on its assumptions about your keyboard. This
resource specifies whether or not Sun/PC keyboard layout (i.e., the PC keyboard’s numeric
keypad together with 12 function keys) should be assumed rather than DEC VT220. This causes
the keypad “+” to be mapped to “,”. and CTRL F1-F10 to F11-F20, depending on the setting of
the ctrlFKeys resource, so xterm emulates a DEC VT220 more accurately. Otherwise (the
default, with sunKeyboard set to “false”), xterm uses PC-style bindings for the function keys and
keypad.

PC-style bindings use the Shift, Alt, Control and Meta keys as modifiers for function-keys and
keypad (see Xterm Control Sequences for details). The PC-style bindings are analogous to
PCTerm, but not the same thing. Normally these bindings do not conflict with the use of the
Meta key as described for the eightBitInput resource. If they do, note that the PC-style bindings
are evaluated first.

See also the keyboardType resource.

tcapFunctionKeys (class TcapFunctionKeys)
Specifies whether or not function key escape codes read from the termcap/terminfo entry
corresponding to the TERM environment variable should be generated for function keys instead
of those configured using sunKeyboard and keyboardType. The default is “false”, i.e., this
feature is disabled.

The keyboardType resource is the preferred mechanism for selecting this mode.

termName (class TermName)
Specifies the terminal type name to be set in the TERM environment variable.

Patch #403 2025-10-19 21

XTERM(1) X Window System XTERM(1)

title (class Title)
Specifies a string that may be used by the window manager when displaying this application.

toolBar (class ToolBar)
Specifies whether or not the toolbar should be displayed. The default is “true”.

ttyModes (class TtyModes)
Specifies a string containing terminal setting keywords. Except where noted, they may be bound
to characters. Other keywords set modes. Not all keywords are supported on a given system.
Allowable keywords include:

Keyword POSIX? Notes

brk no CHAR may send an “interrupt” signal, as
well as ending the input-line.

dsusp no CHAR will send a terminal “stop” signal
after input is flushed.

eof yes CHAR will terminate input (i.e., an end of
file).

eol yes CHAR will end the line.

eol2 no alternate CHAR for ending the line.

erase yes CHAR will erase the last character typed.

erase2 no alternate CHAR for erasing the last input-
character.

flush no CHAR will cause output to be discarded
until another flush character is typed.

intr yes CHAR will send an “interrupt” signal.

kill yes CHAR will erase the current line.

Inext no CHAR will enter the next character quoted.

quit yes CHAR will send a “quit” signal.

rprat no CHAR will redraw the current line.

start yes CHAR will restart the output after
stopping it.

status no CHAR will cause a system-generated
status line to be printed.

stop yes CHAR will stop the output.

susp yes CHAR will send a terminal “stop” signal

swtch no CHAR will switch to a different shell layer.

tabs yes Mode disables tab-expansion.

-tabs yes Mode enables tab-expansion.

weras no CHAR will erase the last word typed.

Control characters may be specified as “char (e.g., “c or "u) and "? may be used to indicate delete
(127). Use "— to denote undef. Use \034 to represent "\, since a literal backslash in an X resource
escapes the next character.

This is very useful for overriding the default terminal settings without having to run stty(1) every
time an xterm is started. Note, however, that the sty program on a given host may use different
keywords; xterm’s table is built in. The POSIX column in the table indicates which keywords are
supported by a standard sty program.

If the ttyModes resource specifies a value for erase, that overrides the ptylInitialErase resource
setting, i.e., xterm initializes the terminal to match that value.

uselnsertMode (class UseInsertMode)
Force use of insert mode by adding appropriate entries to the TERMCAP environment variable.
This is useful if the system termcap is broken. (This resource is ignored on most systems,
because TERMCAP is not used). The default is “false”.

Patch #403 2025-10-19 22

XTERM(1) X Window System XTERM(1)

utmpDisplayld (class UtmpDisplayld)
Specifies whether or not xterm should try to record the display identifier (display number and
screen number) as well as the hostname in the system utmp log file. The default is “true”.

utmplInhibit (class UtmpInhibit)
Specifies whether or not xterm should try to record the user’s terminal in the system utmp log file.
If true, xterm will not try. The default is “false”.

validShells (class ValidShells)
Augment (add to) the system’s /etc/shells, when determining whether to set the “SHELL”
environment variable when running a given program.

The resource value is a list of lines (separated by newlines). Each line holds one pathname.
Xterm ignores any line beginning with “#” after trimming leading/trailing whitespace from each
line.

The default is an empty string.

waitForMap (class WaitForMap)
Specifies whether or not xterm should wait for the initial window map before starting the
subprocess. This is part of the ptyHandshake logic. When xterm is directed to wait in this
fashion, it passes the terminal size from the display end of the pseudo-terminal to the terminal I/O
connection, e.g., using the size according to the window manager. Otherwise, it uses the size as
given in resource values or command-line option —geometry. The default is “false”.

zlconBeep (class ZIconBeep)
Same as —ziconbeep command line argument. If the value of this resource is non-zero, xterms
that produce output while iconified will cause an XBell sound at the given volume and have
“kik” prepended to their icon titles. Most window managers will detect this change
immediately, showing you which window has the output. (A similar feature was in x10 xterm.)
The default is “false”.

zlconTitleFormat (class ZIconTitleFormat)
Allow customization of the string used in the zIconBeep feature. The default value is “*** %s”.

If the resource value contains a “%s”, then xterm inserts the icon title at that point rather than
prepending the string to the icon title. (Only the first “%s” is used).

VT100 Widget Resources
The following resources are specified as part of the vt/00 widget (class VT100). They are specified by
patterns such as “XTerm.vt100.NAME”.

If your xterm is configured to support the “toolbar”, then those patterns need an extra level for the form-
widget which holds the toolbar and vt100 widget. A wildcard between the top-level “XTerm” and the
“vt100” widget makes the resource settings work for either, e.g., “XTerm*vt100.NAME”.

activelcon (class Activelcon)
Specifies whether or not active icon windows are to be used when the xterm window is iconified,
if this feature is compiled into xterm. The active icon is a miniature representation of the content
of the window and will update as the content changes. Not all window managers necessarily
support application icon windows. Some window managers will allow you to enter keystrokes
into the active icon window. The default is “default”.

Xterm accepts either a keyword (ignoring case) or the number shown in parentheses:

false (0)
No active icon is shown.

true (1) The active icon is shown. If you are using twm, use this setting to enable active-icons.

default (2)
Xterm checks at startup, and shows an active icon only for window managers which it
can identify and which are known to support the feature. These are fywm (full support),

Patch #403 2025-10-19 23

XTERM(1) X Window System XTERM(1)

and window maker (limited). A few other window managers (such as twm and ctwm)
support active icons, but do not support the extensions which allow xterm to identify the
window manager.

allowBoldFonts (class AllowBoldFonts)
When set to “false”, xterm will not use bold fonts. This overrides both the alwaysBoldMode and
the boldMode resources.

allowC1Printable (class AllowC1Printable)
If true, overrides the mapping of C1 controls (codes 128-159), telling xterm to treat as if they
were printable characters. Although this corresponds to no particular standard, some users insist
itis a VT100. The default is “false”.

Simply marking the C1 controls as printable does not ensure that xterm will display a character.
That depends upon the font used. When the font does not provide glyphs for those codes, xterm
may instead show a dashed box or a blank, depending on the setting of the forceBoxChars
resource.

When xterm uses UTF-8 encoding, it does not interpret the C1 bytes as control characters:

* Xterm stores characters in each cell on the screen (rather than the sequence of bytes which
comprise a character). When allowC1Printable is on, the stored character codes match the
byte values.

¢ When allowC1Printable is off, xterm stores the same bytes as Unicode replacement characters
(U+FFFD), because a UTF-8 sequence cannot begin with those bytes.

UTF-8 encoding can produce character codes in the range 128-159, using two bytes
(beginning with 0xC2). Xterm does not interpret those two-byte characters as C1 controls.
when allowC1Printable is off. It simply ignores them.

allowColorOps (class AllowColorOps)
Specifies whether control sequences that set/query the dynamic colors should be allowed. ANSI
colors are unaffected by this resource setting. The default is “true”.

allowFontOps (class AllowFontOps)
Specifies whether control sequences that set/query the font should be allowed. The default is
“true”.

allowMouseOps (class AllowMouseOps)
Specifies whether control sequences that enable xterm to send escape sequences to the host on
mouse-clicks and movement. The default is “true”.

allowPasteControls (class AllowPasteControls)
If true, allow control characters such as BEL and CAN to be pasted. Formatting characters (tab,
newline) are normally allowed, unless suppressed via the disallowedPasteControls resource.
Other CO control characters are suppressed unless this resource is enabled. The exact set of
control characters (CO and C1) depends upon whether UTF-8 encoding is used, as well as the
allowC1Printable and disallowedPasteControls resources. The default is “false”.

allowScrollLock (class AllowScrollLock)
Specifies whether control sequences that set/query the Scroll Lock key should be allowed, as well
as whether the Scroll Lock key responds to user’s keypress. The default is “false”.

When this feature is enabled, xterm will sense the state of the Scroll Lock key each time it
acquires focus. Pressing the Scroll Lock key toggles xterm’s internal state, as well as toggling the
associated LED. While the Scroll Lock is active, xterm attempts to keep a viewport on the same
set of lines. If the current viewport is scrolled past the limit set by the saveLines resource, then
Scroll Lock has no further effect.

The reason for setting the default to “false” is to avoid user surprise. This key is generally unused
in keyboard configurations, and has not acquired a standard meaning even when it is used in that
manner. Consequently, users have assigned it for ad hoc purposes.

Patch #403 2025-10-19 24

XTERM(1) X Window System XTERM(1)

See also the autoScrollLock resource.

allowSendEvents (class AllowSendEvents)
Specifies whether or not synthetic key and button events (generated using the X protocol
SendEvent request) should be interpreted or discarded. The default is “false” meaning they are
discarded. Note that allowing such events would create a very large security hole, therefore
enabling this resource forcefully disables the allowXXXOps resources. The default is “false”.

allowTcapOps (class AllowTcapOps)
Specifies whether control sequences that query the terminal’s notion of its function-key strings, as
termcap or terminfo capabilities should be allowed. The default is “true”.

A few programs, e.g., vim, use this feature to get an accurate description of the terminal’s
capabilities, independent of the termcap/terminfo setting:

e Xterm can tell the querying program how many colors it supports. This is a constant,
depending on how it is compiled, typically 16. It does not change if you alter resource settings,
e.g., the boldColors resource.

* Xterm can tell the querying program what strings are sent by modified (shift-, control-, alt-)
function- and keypad-keys. Reporting control- and alt-modifiers is a feature that relies on the
ncurses extended naming.

allowTitleOps (class AllowTitleOps)
Specifies whether control sequences that modify the window title or icon name should be
allowed. The default is “true”.

allowWindowOps (class AllowWindowOps)
Specifies whether extended window control sequences (as used in dtterm) should be allowed.
These include several control sequences which manipulate the window size or position, as well as
reporting these values and the title or icon name. Each of these can be abused in a script;
curiously enough most terminal emulators that implement these restrict only a small part of the
repertoire. For fine-tuning, see disallowedWindowOps. The default is “false”.

altIsNotMeta (class AltIsNotMeta)
If “true”, treat the Alt-key as if it were the Meta-key. Your keyboard may happen to be
configured so they are the same. But if they are not, this allows you to use the same prefix- and
shifting operations with the Alt-key as with the Meta-key. See altSendsEscape and
metaSendsEscape. The default is “false”.

altSendsEscape (class AltSendsEscape)
This is an additional keyboard operation that may be processed after the logic for
metaSendsEscape. It is only available if the altIsNotMeta resource is set.

o If “true”, Alt characters (a character combined with the modifier associated with left/right Alt-
keys) are converted into a two-character sequence with the character itself preceded by ESC.
This applies as well to function key control sequences, unless xterm sees that Alt is used in
your key translations.

o If “false”, Alt characters input from the keyboard cause a shift to 8-bit characters (just like
metaSendsEscape). By combining the Alt- and Meta-modifiers, you can create corresponding
combinations of ESC-prefix and 8-bit characters.

The default is “False”. Xterm provides a menu option for toggling this resource.

alternateScroll (class ScrollCond)
If “true”, the scroll-back and scroll-forw actions send cursor—up and —down keys when xterm is
displaying the alternate screen. The default is “false”.

The alternateScroll state can also be set using a control sequence.

Patch #403 2025-10-19 25

XTERM(1) X Window System XTERM(1)

alwaysBoldMode (class AlwaysBoldMode)
Specifies whether xterm should check if the normal and bold fonts are distinct before deciding
whether to use overstriking to simulate bold fonts. If this resource is true, xterm does not make
the check for distinct fonts when deciding how to handle the boldMode resource. The default is
“false”.

boldMode alwaysBoldMode Comparison Action

false false ignored use font
false true ignored use font
true false same overstrike
true false different use font
true true ignored overstrike

This resource is used only for bitmap fonts:

* When using bitmap fonts, it is possible that the font server will approximate the bold font by
rescaling it from a different font size than expected. The alwaysBoldMode resource allows
the user to override the (sometimes poor) resulting bold font with overstriking (which is at least
consistent).

e The problem does not occur with TrueType fonts (though there can be other unnecessary issues
such as different coverage of the normal and bold fonts).

As an alternative, setting the allowBoldFonts resource to false overrides both the
alwaysBoldMode and the boldMode resources.

alwaysHighlight (class AlwaysHighlight)
Specifies whether or not xterm should always display a highlighted text cursor. By default (if this
resource is false), a hollow text cursor is displayed whenever the pointer moves out of the
window or the window loses the input focus. The default is “false”.

alwaysUseMods (class AlwaysUseMods)
Override the numLock resource, telling xterm to use the Alt and Meta modifiers to construct
parameters for function key sequences even if those modifiers appear in the translations resource.
Normally xterm checks if Alt or Meta is used in a translation that would conflict with function
key modifiers, and will ignore these modifiers in that special case. The default is “false”.

answerbackString (class AnswerbackString)
Specifies the string that xterm sends in response to an ENQ (control/E) character from the host.
The default is a blank string, i.e., “’. A hardware VT100 implements this feature as a setup
option.

appcursorDefault (class AppcursorDefault)
If “true”, the cursor keys are initially in application mode. This is the same as the VT102 private
DECCKM mode, The default is “false”.

appkeypadDefault (class AppkeypadDefault)
If “true”, the keypad keys are initially in application mode. The default is “false”.

assumeAllChars (class AssumeAllChars)
If “true”, this enables a special case in bitmap fonts to allow the font server to choose how to
display missing glyphs. The default is “true”.

The reason for this resource is to help with certain quasi-automatically generated fonts (such as
the ISO-10646-1 encoding of Terminus) which have incorrect font-metrics.

autoScrollLock (class AutoScrollLock)
If “true”, xterm will maintain its viewport of displayed lines whenever displaying scrollback, as if
allowScrollLock were enabled and the Scroll Lock key had been pressed. The default is “false”.
This feature is only useful if the scrollTtyOutput resource is set to “false”.

Patch #403 2025-10-19 26

XTERM(1) X Window System XTERM(1)

autoWrap (class AutoWrap)
Specifies whether or not auto-wraparound should be enabled. This is the same as the VT102
DECAWM. The default is “true”.

awaitInput (class AwaitInput)
Specifies whether or not xterm uses a 50 millisecond timeout to await input (i.e., to support the
Xaw3d arrow scrollbar). The default is “false”.

backarrowKey (class BackarrowKey)
Specifies whether the backarrow key transmits a backspace (8) or delete (127) character. This
corresponds to the DECBKM control sequence. A “true” value specifies backspace. The default
is “True”. Pressing the control key toggles this behavior.

background (class Background)
Specifies the color to use for the background of the window. The default is
“XtDefaultBackground”.

belllsUrgent (class BelllsUrgent)
Specifies whether to set the Urgency hint for the window manager when making a bell sound.
The default is “false”.

bellOnReset (class BellOnReset)
Specifies whether to sound a bell when doing a hard reset. The default is “true”.

bellSuppressTime (class BellSuppressTime)
Number of milliseconds after a bell command is sent during which additional bells will be
suppressed. Default is 200. If set non-zero, additional bells will also be suppressed until the
server reports that processing of the first bell has been completed; this feature is most useful with
the visible bell.

boldColors (class ColorMode)
Specifies whether to combine bold attribute with colors like the IBM PC, i.e., map colors 0
through 7 to colors 8 through 15. These normally are the brighter versions of the first 8 colors,
hence bold. The default is “true”.

boldFont (class BoldFont)
Specifies the name of the bold font to use instead of overstriking. There is no default for this
resource.

This font must be the same height and width as the normal font, otherwise it is ignored. If only
one of the normal or bold fonts is specified, it will be used as the normal font and the bold font
will be produced by overstriking this font.

See also the discussion of boldMode and alwaysBoldMode resources.

boldMode (class BoldMode)
This specifies whether or not text with the bold attribute should be overstruck to simulate bold
fonts if the resolved bold font is the same as the normal font. It may be desirable to disable bold
fonts when color is being used for the bold attribute.

Note that xterm has one bold font which you may set explicitly. Xterm attempts to derive a bold
font for the other font selections (fontl through font7). If it cannot find a bold font, it will use
the normal font. In each case (whether the explicit resource or the derived font), if the normal
and bold fonts are distinct, this resource has no effect. The default is “true”.

See the alwaysBoldMode resource which can modify the behavior of this resource.

Although xterm attempts to derive a bold font for other font selections, the font server may not
cooperate. Since X11R6, bitmap fonts have been scaled. The font server claims to provide the
bold font that xterm requests, but the result is not always readable. XFree86 introduced a feature
which can be used to suppress the scaling. In the X server’s configuration file (e.g.,
“letc/X11/XFree86” or “/etc/X11/xorg.conf”), you can add “:unscaled” to the end of the directory
specification for the “misc” fonts, which comprise the fixed-pitch fonts that are used by xterm.

Patch #403 2025-10-19 27

XTERM(1)

X Window System XTERM(1)
For example
FontPath "/usr/1lib/X11/fonts/misc/"
would become
FontPath "/usr/lib/X11l/fonts/misc/:unscaled"

Depending on your configuration, the font server may have its own configuration file. The same
“:unscaled” can be added to its configuration file at the end of the directory specification for
“misc”.

The bitmap scaling feature is also used by xterm to implement VT102 double-width and double-
height characters.

brokenLinuxOSC (class BrokenLinuxOSC)

If true, xterm applies a workaround to ignore malformed control sequences that a Linux script
might send. Compare the palette control sequences documented in console_codes with
ECMA-48. The default is “true”.

brokenSelections (class BrokenSelections)

If true, xterm in 8-bit mode will interpret STRING selections as carrying text in the current
locale’s encoding. Normally STRING selections carry ISO-8859-1 encoded text. Setting this
resource to “true” violates the ICCCM; it may, however, be useful for interacting with some
broken X clients. The default is “false”.

brokenStringTerm (class BrokenStringTerm)

Patch #403

provides a work-around for some ISDN routers which start an application control string without
completing it. Set this to “true” if xterm appears to freeze when connecting. The default is
“false”.

Xterm’s state parser recognizes several types of control strings which can contain text, e.g.,

APC (Application Program Command),
DCS (Device Control String),

OSC (Operating System Command),
PM (Privacy Message), and

SOS (Start of String),

Each should end with a string-terminator (a special character which cannot appear in these
strings). Ordinary control characters found within the string are not ignored; they are processed
without interfering with the process of accumulating the control string’s content. Xterm
recognizes these controls in all modes, although some of the functions may be suppressed after
parsing the control.

When enabled, this feature allows the user to exit from an unterminated control string when any
of these ordinary control characters are found:

control/D (used as an end of file in many shells),
control/H (backspace),

control/I (tab-feed),

control/J (line feed aka newline),
control/K (vertical tab),
control/LL (form feed),

control/M (carriage return),
control/N (shift-out),

control/O (shift-in),

control/Q (XOFF),

control/X (cancel)

2025-10-19 28

XTERM(1) X Window System XTERM(1)

c132 (class C132)
Specifies whether or not the VT102 DECCOLM escape sequence, used to switch between 80 and
132 columns, should be honored. The default is “false”.

cacheDoublesize (class CacheDoublesize)
Tells whether to cache double-sized fonts by xterm. Set this to zero to disable double-sized fonts
altogether.

cdXtraScroll (class CdXtraScroll)
Specifies whether xterm should scroll to a new page when clearing the whole screen. Like
tiXtraScroll, the intent of this option is to provide a picture of the full-screen application’s
display on the scrollback before wiping out the text.

Xterm accepts either a keyword (ignoring case) or the number shown in parentheses:

false (0)
nothing is added to the scrollback.

true (1) the current screen is added to the scrollback.

trim (2) the current screen is added to the scrollback, but repeated blank lines are trimmed
(reduced to a single blank line).

The default for this resource is “false”.

charClass (class CharClass)
Specifies comma-separated lists of character class bindings of the form

low [-high] [:value] .

These are used in determining which sets of characters should be treated the same when doing cut
and paste. See the CHARACTER CLASSES section.

checksumExtension (class ChecksumExtension)
DEC VT420 and up support a control sequence DECRQCRA which reports the checksum of the
characters in a rectangle. Xterm supports this, with extensions that can be configured with bits of
the checksumExtension:

do not negate the result.

do not report the VT100 video attributes.

do not omit checksum for blanks.

omit checksum for cells not explicitly initialized.

do not mask cell value to 8 bits or ignore combining characters.

wm AW N = O

do not mask cell value to 7 bits.

With the default value (0), xterm matches the behavior of DEC’s terminals. To use all extensions,
set all bits, “—1" for example.

cjkWidth (class CjkWidth)
Specifies whether xterm should follow the traditional East Asian width convention. When turned
on, characters with East Asian Ambiguous (A) category in UTR 11 have a column width of 2.
You may have to set this option to “true” if you have some old East Asian terminal based
programs that assume that line-drawing characters have a column width of 2. If this resource is
false, the mkWidth resource controls the choice between the system’s wewidth(3) and xterm’s
built-in tables. The default is “false”.

color0 (class Color0)
color1 (class Colorl)

color2 (class Color2)

Patch #403 2025-10-19 29

XTERM(1) X Window System XTERM(1)

color3 (class Color3)
color4 (class Colord)
color5 (class Color5)
color6 (class Color6)

color7 (class Color7)
These specify the colors for the ISO-6429 extension. The defaults are, respectively, black, red3,
green3, yellow3, a customizable dark blue, magenta3, cyan3, and gray90. The default shades of
color are chosen to allow the colors 8—15 to be used as brighter versions.

color8 (class Color8)

color9 (class Color9)

color10 (class Color10)
color11 (class Colorll)
color12 (class Color12)
color13 (class Color13)
color14 (class Color14)

color15 (class Color15)
These specify the colors for the ISO-6429 extension if the bold attribute is also enabled. The
default resource values are respectively, gray50, red, green, yellow, a customized light blue,
magenta, cyan, and white.

color16 (class Color16)
through

color255 (class Color255)
These specify the colors for the 256-color extension. The default resource values are for

* colors 16 through 231 to make a 6x6x6 color cube, and
* colors 232 through 255 to make a grayscale ramp.

Resources past colorl5 are available as a compile-time option. Due to a hardcoded limit in the X
libraries on the total number of resources (to 400), the resources for 256-colors are omitted when
wide-character support and [uit are enabled. Besides inconsistent behavior if only part of the
resources were allowed, determining the exact cutoff is difficult, and the X libraries tend to crash
if the number of resources exceeds the limit. The color palette is still initialized to the same
default values, and can be modified via control sequences.

On the other hand, the resource limit does permit including the entire range for 88-colors.

colorAttrMode (class ColorAttrMode)
Specifies whether colorBD, colorBL, colorRV, and colorUL should override ANSI colors. If
not, these are displayed only when no ANSI colors have been set for the corresponding position.
The default is “false”.

colorBD (class ColorBD)
This specifies the color to use to display bold characters if the “colorBDMode” resource is
enabled. The default is “XtDefaultForeground”.

See also the veryBoldColors resource which allows combining bold and color.

colorBDMode (class ColorAttrMode)
Specifies whether characters with the bold attribute should be displayed in color or as bold
characters. Note that setting colorMode off disables all colors, including bold. The default is
“false”.

Patch #403 2025-10-19 30

XTERM(1) X Window System XTERM(1)

colorBL (class ColorBL)
This specifies the color to use to display blink characters if the “colorBLMode” resource is
enabled. The default is “XtDefaultForeground”.

See also the veryBoldColors resource which allows combining underline and color.

colorBLMode (class ColorAttrMode)
Specifies whether characters with the blink attribute should be displayed in color. Note that
setting colorMode off disables all colors, including this. The default is “false”.

colorEvents (class ColorEvents)
Specifies OSC control codes that can be processed from client messages with the type
XTERM_CONTROL. These events may be generated using the X protocol SendEvent request.
The resource value is a comma-separated list of codes allowed. The default is the empty string,
disallowing all processing.

The names are listed below. Xterm ignores capitalization, but they are shown in mixed-case for
clarity. Either a name or a number can be used.

TEXT_FG (10)
text foreground

TEXT_BG (11)
text background

TEXT_CURSOR (12)
text cursor

MOUSE_FG (13)
mouse foreground

MOUSE_BG (14)
mouse background

TEK_FG (15)

tektronix foreground
TEK_BG (16)

tektronix background

HIGHLIGHT_BG (17)
highlight background

TEK_CURSOR (18)
tektronix cursor

HIGHLIGHT_FG (19)
highlight foreground

For example, if messages for the text color are enabled, e.g., by setting the resource to
text_fg, text_bg

the text foreground color can be set to black by sending a message with this content:
10;#000000

colorIT (class ColorIT)
This specifies the color to use to display italic characters if the “colorITMode” resource is
enabled. The default is “XtDefaultForeground”.

See also the veryBoldColors resource which allows combining attributes and color.

colorITMode (class ColorAttrMode)
Specifies whether characters with the italic attribute should be displayed in color or as italic
characters. The default is “false”.

Patch #403 2025-10-19 31

XTERM(1) X Window System XTERM(1)

Note that:
» Setting colorMode off disables all colors, including italic.
¢ The italicULMode resource overrides colorI TMode.

colorInnerBorder (class ColorInnerBorder)
Normally, xterm fills the VT100 window’s inner border using the background color.

If the colorInnerBorder resource is enabled, at startup xterm will compare the borderColor and
the window’s background color. If those are different, xterm will use the borderColor resource
to fill the inner border. Otherwise, it will use the window’s background color.

The default is “false”.

colorMode (class ColorMode)
Specifies whether or not recognition of ANSI (ISO-6429) color change escape sequences should
be enabled. The default is “true”.

colorRY (class ColorRY)
This specifies the color to use to display reverse characters if the “colorRVMode” resource is
enabled. The default is “XtDefaultForeground”.

See also the veryBoldColors resource which allows combining reverse and color.

colorRVMode (class ColorAttrMode)
Specifies whether characters with the reverse attribute should be displayed in color. Note that
setting colorMode off disables all colors, including this. The default is “false”.

colorUL (class ColorUL)
This specifies the color to use to display underlined characters if the “colorULMode” resource is
enabled. The default is “XtDefaultForeground”.

See also the veryBoldColors resource which allows combining underline and color.

colorULMode (class ColorAttrMode)
Specifies whether characters with the underline attribute should be displayed in color or as
underlined characters. Note that setting colorMode off disables all colors, including underlining.
The default is “false”.

combiningChars (class CombiningChars)
Specifies the number of wide-characters which can be stored in a cell to overstrike (combine)
with the base character of the cell. This can be set to values in the range O to 5. The default is
“27.

ctrlFKeys (class CtrlFKeys)
In VT220 keyboard mode (see sunKeyboard resource), specifies the amount by which to shift
F1-F12 given a control modifier (CTRL). This allows you to generate key symbols for F10-F20
on a Sun/PC keyboard. The default is “10”, which means that CTRL F1 generates the key
symbol for F11.

curses (class Curses)
Specifies whether or not the last column bug in more(1) should be worked around. See the —cu
option for details. The default is “false”.

cursorBar (class CursorBar)
Specifies whether to make the cursor a left-bar or a box, unless the cursorUnderLine resource is
set. The default is “false”.

cursorBlink (class CursorBlink)
Specifies whether to make the cursor blink. Xterm accepts either a keyword (ignoring case) or the
number shown in parentheses:

Patch #403 2025-10-19 32

XTERM(1) X Window System XTERM(1)

false (0)
The cursor will not blink, but may be combined with escape sequences according to the
cursorBlinkXOR resource.

true (1)
The cursor will blink, but may be combined with escape sequences according to the
cursorBlinkXOR resource.

always (2)
The cursor will always blink, ignoring escape sequences. The menu entry will be disabled.

never (3)
The cursor will never blink, ignoring escape sequences. The menu entry will be disabled.

The default is “false”.

cursorBlinkXOR (class CursorBlinkXOR)
Xterm uses two inputs to determine whether the cursor blinks:

¢ The cursorBlink resource (which can be altered with a menu entry).
» Control sequences (private mode 12 and DECSCUSR).
The cursorBlinkXOR resource determines how those inputs are combined:

false
Xterm uses the logical-OR of the two variables. If either is set, xterm makes the cursor
blink.

true
Xterm uses the logical-XOR of the two variables. If only one is set, xterm makes the cursor
blink.

The default is “true”.

cursorColor (class CursorColor)
Specifies the color to use for the text cursor. The default is “XtDefaultForeground”. By default,
xterm attempts to keep this color from being the same as the background color, since it draws the
cursor by filling the background of a text cell. The same restriction applies to control sequences
which may change this color.

Setting this resource overrides most of xterm’s adjustments to cursor color. It will still use
reverse-video to disallow some cases, such as a black cursor on a black background.

cursorOffTime (class CursorOffTime)
Specifies the duration of the “off” part of the cursor blink cycle-time in milliseconds. The same
timer is used for text blinking. The default is “300”.

cursorOnTime (class CursorOnTime)
Specifies the duration of the “on” part of the cursor blink cycle-time, in milliseconds. The same
timer is used for text blinking. The default is “600”.

cursorUnderLine (class CursorUnderLine)
Specifies whether to make the cursor underlined or a box. If unset (false), the cursorBar
resource may set the cursor shape. The default is “false”.

cutNewline (class CutNewline)
If “false”, triple clicking to select a line does not include the newline at the end of the line. If
“true”, the Newline is selected. The default is “true”.

cutToBeginningOfLine (class CutToBeginningOfLine)
If “false”, triple clicking to select a line selects only from the current word forward. If “true”, the
entire line is selected. The default is “true”.

Patch #403 2025-10-19 33

XTERM(1) X Window System XTERM(1)

decGraphicsID (class DecGraphicsID)
Allows a way to combine the graphics feature from certain DEC terminals (125, 240, 241, 330,
340 or 382) with other emulation levels which did not provide the graphics feature. As in
decTerminallD, leading non-digit characters are ignored, e.g., “vt340” and “340” are the same.

If the resource value is nonzero, xterm uses that emulation level when initializing the drawing
region and decoding control sequences to draw graphics.

The default is “0”.

decTerminallD (class DecTerminallD)
Specifies the emulation level (100=VT100, 220=VT220, etc.), used to determine the type of
response to a DA control sequence. Leading non-digit characters are ignored, e.g., “vt100” and
“100” are the same. The default is “420”.

defaultString (class DefaultString)
Specify the character (or string) which xterm will substitute when pasted text includes a character
which cannot be represented in the current encoding. For instance, pasting UTF-8 text into a
display of ISO-8859-1 characters will only be able to display codes 0-255, while UTF-8 text can
include Unicode values above 255. The default is “#” (a single pound sign).

If the undisplayable text would be double-width, xterm will add a space after the “#” character, to
give roughly the same layout on the screen as the original text.

deleteIsDEL (class DeleteIsDEL)
Specifies what the Delete key on the editing keypad should send when pressed. The resource
value is a string, evaluated as a boolean after startup. Xferm uses it in conjunction with the
keyboardType resource:

« If the keyboard type is “default”, or “vt220” and the resource is either “true” or “maybe” send
the VT220-style Remove escape sequence. Otherwise, send DEL (127).

» If the keyboard type is “legacy”, and the resource is “true” send DEL. Otherwise, send the
Remove sequence.

» Otherwise, if the keyboard type is none of these special cases, send DEL (127).

The default is “Maybe”. The resource is allowed to be a non-boolean “maybe” so that the popup
menu Delete is DEL entry does not override the keyboard type.

directColor (class DirectColor)
Specifies whether to handle direct-color control sequences using the X server’s available colors,
or to approximate those using a color map with 256 entries. A “true” value enables the former.
The default is “true”.

disallowed ColorOps (class Disallowed ColorOps)
Specify which features will be disabled if allowColorOps is false. This is a comma-separated
list of names. The default value is

SetColor,GetColor, GetAnsiColor
The names are listed below. Xterm ignores capitalization, but they are shown in mixed-case for
clarity.
SetColor

Set a specific dynamic color.

GetColor
Report the current setting of a given dynamic color.

GetAnsiColor
Report the current setting of a given ANSI color (actually any of the colors set via ANSI-
style controls).

Patch #403 2025-10-19 34

XTERM(1) X Window System XTERM(1)

disallowedFontOps (class DisallowedFontOps)
Specify which features will be disabled if allowFontOps is false. This is a comma-separated list
of names. The default value is

SetFont, GetFont

The names are listed below. Xterm ignores capitalization, but they are shown in mixed-case for
clarity.

SetFont
Set the specified font.

GetFont
Report the specified font.

disallowedMouseOps (class DisallowedMouseOps)
Specify which features will be disabled if allowMouseOps is false. This is a comma-separated
list of names. The default value is “*” which matches all names. The names are listed below.
Xterm ignores capitalization, but they are shown in mixed-case for clarity.

X10 The original X10 mouse protocol.

Locator
DEC locator mode

VT200Click
X11 mouse-clicks only.

VT200Hilite
X11 mouse-clicks and highlighting.

AnyButton
XFree86 xterm any-button mode sends button-clicks as well as motion events while the
button is pressed.

AnyEvent
XFree86 xterm any-event mode sends button-clicks as well as motion events whether or not
a button is pressed.

FocusEvent
Send FocusIn/FocusOut events.

Extended
The first extension beyond X11 mouse protocol, this encodes the coordinates in UTF-8. It
is deprecated in favor of SGR, but provided for compatibility.

SGR This is the recommended extension for mouse-coordinates

URXVT
Like Extended, this is provided for compatibility.

AlternateScroll
This overrides the alternateScroll resource.

disallowedPasteControls (class DisallowedPasteControls)
Use this resource to disallow pasting specific CO control characters when the allowPasteControls
resource is false (i.e., the default). This resource defines the set of control characters which
cannot be pasted, converting each into a space. Other CO controls are pasted without change.

The resource value is a comma-separated list of names. Xterm ignores capitalization. The
default value is

BS,DEL, ENQ, EOT, ESC, NUL, STTY

The names are listed below:

Patch #403 2025-10-19 35

XTERM(1) X Window System XTERM(1)

CO all ASCII control characters.

Individual CO characters
NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL, BS, HT, LF, VT, FF, CR, SO, SI, DLE,
DCI1, DC2, DC3, DC4, NAK, SYN, ETB, CAN, EM, SUB, ESC, FS, GS, RS, US

DEL ASCII delete
NL ASCII line-feed, i.e., “newline” is the same as LF.

STTY
special characters which are set with stty(1).

disallowed TcapOps (class Disallowed TcapOps)
Specify which features will be disabled if allowTcapOps is false. This is a comma-separated list
of names. The default value is

SetTcap, GetTcap

The names are listed below. Xterm ignores capitalization, but they are shown in mixed-case for
clarity.

SetTcap
(not implemented)

GetTcap
Report specified function- and other special keys.

disallowedWindowOps (class Disallowed WindowOps)
Specify which features will be disabled if allowWindowOps is false. This is a comma-separated
list of names, or (for the controls adapted from dtterm the operation number). The default value
is
GetChecksum, GetIconTitle, GetSelection, GetWinTitle, SetSelection, SetXprop
(i.e., all except a few “dangerous” operations are allowed).

The names are listed below. Xterm ignores capitalization, but they are shown in mixed-case for
clarity. Where a number can be used as an alternative, it is given in parentheses after the name.

ColumnMode
Enable (or disable) switching between 80 and 132 columns. This is in addition to the ¢132
resource.

GetChecksum
Report checksum of characters in a rectangular region.

GetlconTitle (20)
Report xterm window’s icon label as a string.

GetScreenSizeChars (19)
Report the size of the screen in characters as numbers.

GetSelection
Report selection data as a base64 string.

GetWinPosition (13)
Report xterm window position as numbers.

GetWinSizeChars (18)
Report the size of the text area in characters as numbers.

GetWinSizePixels (14)
Report xterm window in pixels as numbers.

GetWinState (11)
Report xterm window state as a number.

Patch #403 2025-10-19 36

XTERM(1) X Window System XTERM(1)

GetWinTitle (21)
Report xterm window’s title as a string.

LowerWin (6)

Lower the xterm window to the bottom of the stacking order.
MaximizeWin (9)

Maximize window (i.e., resize to screen size).
FullscreenWin (10)

Use full screen (i.e., resize to screen size, without window decorations).
MinimizeWin (2)

Iconify window.
PopTitle (23)

Pop title from internal stack.
PushTitle (22)

Push title to internal stack.
RaiseWin (5)

Raise the xterm window to the front of the stacking order.

RefreshWin (7)
Refresh the xterm window.

RestoreWin (1)
De-iconify window.
SetChecksum

Modify algorithm for reporting checksum of characters in a rectangular region.

SetSelection
Set selection data.

SetWinLines
Resize to a given number of lines, at least 24.

SetWinPosition (3)
Move window to given coordinates.

SetWinSizeChars (8)
Resize the text area to given size in characters.

SetWinSizePixels (4)
Resize the xterm window to given size in pixels.

SetXprop
Set X property on top-level window.

StatusLine
Resize window to provide a VT320-style status line.

dynamicColors (class DynamicColors)
Specifies whether or not escape sequences to change colors assigned to different attributes are
recognized.

eightBitControl (class EightBitControl)
Specifies whether or not control sequences sent by the terminal should be eight-bit characters or
escape sequences. The default is “false”.

eightBitInput (class EightBitInput)
If “true”, Meta characters (a single-byte character combined with the Meta modifier key) input
from the keyboard are presented as a single character, modified according to the eightBitMeta
resource. If “false”, Meta characters are converted into a two-character sequence with the

Patch #403 2025-10-19 37

XTERM(1) X Window System XTERM(1)

character itself preceded by ESC. The default is “true”.

The metaSendsEscape and altSendsEscape resources may override this feature. Generally
keyboards do not have a key labeled “Meta”, but “Alt” keys are common, and they are
conventionally used for “Meta”. If they were synonymous, it would have been reasonable to
name this resource “altSendsEscape”, reversing its sense. For more background on this, see the
meta(3x) function in curses.

Note that the Alt key is not necessarily the same as the Meta modifier. The xmodmap utility lists
your key modifiers. X defines modifiers for shift, (caps) lock and control, as well as 5 additional
modifiers which are generally used to configure key modifiers. Xferm inspects the same
information to find the modifier associated with either Meta key (left or right), and uses that key
as the Meta modifier. It also looks for the NumLock key, to recognize the modifier which is
associated with that.

If your xmodmap configuration uses the same keycodes for Alt- and Meta-keys, xterm will only
see the Alt-key definitions, since those are tested before Meta-keys. NumLock is tested first. It is
important to keep these keys distinct; otherwise some of xterm’s functionality is not available.

The eightBitInput resource is tested at startup time. If “true”, the xterm tries to put the terminal
into 8-bit mode. If “false”, on startup, xterm tries to put the terminal into 7-bit mode. For some
configurations this is unsuccessful; failure is ignored. After startup, xterm does not change the
terminal between 8-bit and 7-bit mode.

As originally implemented in X11, the resource value did not change after startup. However
(since patch #216 in 2006) xterm can modify eightBitInput after startup via a control sequence.
The corresponding terminfo capabilities smm (set meta mode) and rmm (reset meta mode) have
been recognized by bash for some time. Interestingly enough, bash’s notion of “meta mode”
differs from the standard definition (in the ferminfo manual), which describes the change to the
eighth bit of a character. It happens that bash views “meta mode” as the ESC character that xterm
puts before a character when a special meta key is pressed. bash’s early documentation talks
about the ESC character and ignores the eighth bit.

eightBitMeta (class EightBitMeta)
This controls the way xterm modifies the eighth bit of a single-byte key when the eightBitInput
resource is set. The default is “locale”.

The resource value is a string, evaluated as a boolean after startup.
false The key is sent unmodified.

locale
The key is modified only if the locale uses eight-bit encoding.

true The key is sent modified.

never
The key is always sent unmodified.

Except for the never choice, xterm honors the terminfo capabilities smm (set meta mode) and
rmm (reset meta mode), allowing the feature to be turned on or off dynamically.

If eightBitMeta is enabled when the locale uses UTF-8, xterm encodes the value as UTF-8 (since
patch #183 in 2003).

eightBitOutput (class EightBitOutput)
Specifies whether or not eight-bit characters sent from the host should be accepted as is or
stripped when printed. The default is “true”, which means that they are accepted as is.

eightBitSelectTypes (class EightBitSelectTypes)
Override xterm’s default selection target list (see SELECT/PASTE) for selections in normal
(ISO-8859-1) mode. The default is an empty string, i.e., “”’, which does not override anything.

Patch #403 2025-10-19 38

XTERM(1) X Window System XTERM(1)

eraseSavedLines (class EraseSavedLines)
Specifies whether or not to allow xterm extended ED/DECSED control sequences to erase the
saved-line buffer. The default is “true”.

faceName (class FaceName)
Specify the pattern for scalable fonts selected from the FreeType library if support for that library
was compiled into xterm. There is no default value.

One or more fonts can be specified, separated by commas. If prefixed with “x:” or “x11:” the
specification applies to the XLFD font resource. A “xft:” prefix is accepted but unnecessary
since a missing prefix for faceName means that it will be used for TrueType. For example,

XTerm*faceName: x:fixed,xft:Bitstream Vera Sans Mono

Two TrueType fonts can be specified in this way. The first is the primary font; the second acts as
a manual override to the fontconfig fontset.

If no faceName resource is specified, or if there is no match for both TrueType normal and bold
fonts, xterm uses the XLFD (bitmap) font and related resources.

It is possible to select suitable bitmap fonts using a script such as this:

#!/bin/sh
FONT=‘xfontsel -print‘
test —-n "SFONT" && xfd —-fn "SFONT"

However (even though xfd accepts a “—fa” option to denote FreeType fonts), xfontsel has not been
similarly extended. As a workaround, you may try

fc-list :scalable=true:spacing=mono: family
to find a list of scalable fixed-pitch fonts which may be used for the faceName resource value.

faceNameDoublesize (class FaceNameDoublesize)
Specify a double-width scalable font for cases where an application requires this, e.g., in CJK
applications. There is no default value.

Like the faceName resource, this allows one or more comma-separated font specifications to be
applied to the wide TrueType or XLFD fonts.

If the application uses double-wide characters and this resource is not given, xterm will use a
scaled version of the font given by faceName.

faceSize (class FaceSize)
Specify the pointsize for fonts selected from the FreeType library if support for that library was
compiled into xterm. The default is “8.0” On the VT Fonts menu, this corresponds to the Default
entry.

Although the default is “8.0”, this may not be the same as the pointsize for the default bitmap
font, i.e., that assigned with the —fn option, or the font resource. The default value of faceSize is
chosen to match the size of the “fixed” font, making switching between bitmap and TrueType
fonts via the font menu give comparable sizes for the window. If your —fn option uses a different
pointsize, you might want to adjust the faceSize resource to match.

You can specify the pointsize for TrueType fonts selected with the other size-related menu entries
such as Medium, Huge, etc., by using one of the following resource values. If you do not specify
a value, they default to “0.0”, which causes xterm to use the ratio of font sizes from the
corresponding bitmap font resources to obtain a TrueType pointsize.

If all of the faceSize resources are set, then xterm will use this information to determine the next
smaller/larger TrueType font for the larger—vt—font() and smaller—vt—font() actions. If any are
not set, xterm will use only the areas of the bitmap fonts.

Patch #403 2025-10-19 39

XTERM(1) X Window System XTERM(1)

faceSizel (class FaceSizel)
Specifies the pointsize of the first alternative font.

faceSize2 (class FaceSize2)
Specifies the pointsize of the second alternative font.

faceSize3 (class FaceSize3)
Specifies the pointsize of the third alternative font.

faceSized (class FaceSized)
Specifies the pointsize of the fourth alternative font.

faceSize5 (class FaceSize5)
Specifies the pointsize of the fifth alternative font.

faceSize6 (class FaceSize6)
Specifies the pointsize of the sixth alternative font.

faceSize7 (class FaceSize7)
Specifies the pointsize of the seventh alternative font.

faintIsRelative (class FaintIsRelative)
Faint colors are derived from the current text color, e.g., the ANSI colors, by scaling the red,
green and blue components. Use this resource to specify whether that is done relative to the
current background color, or as an absolute value. The default is “false”.

fastScroll (class FastScroll)
Modifies the effect of jump scroll (jumpScroll) by suppressing screen refreshes for the special
case when output to the screen has completely shifted the contents off-screen. Likewise, screen
refreshes for related actions, e.g., carriage returns, are suppressed.

For instance, cat’ing a large file to the screen normally results in a large number of screen
refreshes. By suppressing the corresponding refreshes, scrolling speed improves.

The default is “true”.

font (class Font)
Specifies the name of the normal font. The default is “fixed”.

See the discussion of the locale resource, which describes how this font may be overridden.
NOTE: some resource files use patterns such as
*font: fixed
which are overly broad, affecting both
xterm.vt100. font
and
xterm.vt100.utf8Fonts. font
which is probably not what you intended.

font1 (class Fontl)
Specifies the name of the first alternative font, corresponding to “Unreadable” in the standard
menu.

font2 (class Font2)
Specifies the name of the second alternative font, corresponding to “Tiny” in the standard menu.

font3 (class Font3)
Specifies the name of the third alternative font, corresponding to “Small” in the standard menu.

font4 (class Font4)
Specifies the name of the fourth alternative font, corresponding to “Medium” in the standard
menu.

Patch #403 2025-10-19 40

XTERM(1) X Window System XTERM(1)

font5 (class Font5)
Specifies the name of the fifth alternative font, corresponding to “Large” in the standard menu.

font6 (class Font6)
Specifies the name of the sixth alternative font, corresponding to “Huge” in the standard menu.

font7 (class Font7)
Specifies the name of the seventh alternative font, corresponding to “Enormous” in the standard
menu.

fontDoublesize (class FontDoublesize)
Specifies whether xterm should attempt to use font scaling to draw double-sized characters.
Some older font servers cannot do this properly, will return misleading font metrics. The default
is “true”. If disabled, xterm will simulate double-sized characters by drawing normal characters
with spaces between them.

fontWarnings (class FontWarnings)
Specify whether xterm should report an error if it fails to load a font:

0 Never report an error (though the X libraries may).
1 Report an error if the font name was given as a resource setting.
2 Always report an error on failure to load a font.

The default is “1”.

forceBoxChars (class ForceBoxChars)
Specifies whether xterm should assume the normal and bold fonts have VT100 line-drawing
characters:

* The fixed-pitch ISO-8859-*-encoded fonts used by xterm normally have the VT100 line-
drawing glyphs in cells 1-31. Other fixed-pitch fonts may be more attractive, but lack these

glyphs.

e When using an ISO-10646-1 font and the wideChars resource is true, xterm uses the Unicode
glyphs which match the VT100 line-drawing glyphs.

The default is “false”:

o If “false”, xterm checks for missing glyphs in the font and makes line-drawing characters
directly as needed.

When “false”, xterm also shows a blank where otherwise printable glyphs are missing from the
current font.

o If “true”, xterm assumes the font does not contain the line-drawing characters, and draws them
directly.

When “true”, xterm also shows a dashed box outline where otherwise printable glyphs are
missing from the current font.

The VT100 line-drawing character set (also known as the DEC Special Character and Line
Drawing Set) is shown in this table. It includes a few special characters which are not used for
drawing lines:

Cell Unicode Description

U+25AE black vertical rectangle
U+25C6 black diamond

U+2592 medium shade

U+2409 symbol for horizontal tabulation
U+240C symbol for form feed

U+240D symbol for carriage return
U+240A symbol for line feed

ANk WD = O

Patch #403 2025-10-19 41

XTERM(1) X Window System XTERM(1)

7 U+00BO degree sign

8 U+00B1 plus-minus sign

9 U+2424 symbol for newline

10 U+240B symbol for vertical tabulation

11 U+2518 box drawings light up and left

12 U+2510 box drawings light down and left

13 U+250C box drawings light down and right
14 U+2514 box drawings light up and right

15 U+253C box drawings light vertical and horizontal
16 U+23BA box drawings scan 1

17 U+23BB box drawings scan 3

18 U+2500 box drawings light horizontal

19 U+23BC box drawings scan 7

20 U+23BD box drawings scan 9

21 U+251C box drawings light vertical and right
22 U+2524 box drawings light vertical and left
23 U+2534 box drawings light up and horizontal
24 U+252C box drawings light down and horizontal
25 U+2502 box drawings light vertical

26 U+2264 less-than or equal to

27 U+2265 greater-than or equal to

28 U+03CO greek small letter pi

29 U+2260 not equal to

30 U+00A3 pound sign

31 U+00B7 middle dot

forcePackedFont (class ForcePackedFont)
Specifies whether xterm should use the maximum or minimum glyph width when displaying
using a bitmap font. Use the maximum width to help with proportional fonts. The default is
“true”, denoting the minimum width.

forceXftHeight (class ForceXftHeight)
Specifies whether xterm should use the given font metrics for TrueType fonts, or amend the
ascent/descent to total no more than the given font-height. This optional feature is used to work
around inconsistencies in FreeType’s rounding computation. The default is “false”, denoting the
given metrics.

foreground (class Foreground)
Specifies the color to use for displaying text in the window. Setting the class name instead of the
instance name is an easy way to have everything that would normally appear in the text color
change color. The default is “XtDefaultForeground”.

formatCursorKeys (class FormatCursorKeys)
When modifyCursorKeys is 4 or greater, use modified form as in formatOtherKeys, for cursor-
keys instead of the conventional form. The default is “0”.

formatFunctionKeys (class FormatFunctionKeys)
When modifyFunctionKeys is 4 or greater, use modified form as in formatOtherKeys, for
function-keys instead of the conventional form. The default is “0”.

formatKeypadKeys (class FormatKeypadKeys)
When modifyKeypadKeys is 4 or greater, use modified form as in formatOtherKeys, for
numeric keypad-keys instead of the conventional form. The default is “0”.

formatModifierKeys (class FormatModifierKeys)
When modifyModifierKeys is 4 or greater, use modified form as in formatOtherKeys, for
modifier-keys instead of the conventional form. The default is “0”.

Patch #403 2025-10-19 42

XTERM(1) X Window System XTERM(1)

formatOtherKeys (class FormatOtherKeys)
Overrides the format of the escape sequence used to report modified keys with the
modifyOtherKeys resource.

0 send modified keys as parameters for function-key 27 (default).
1 send modified keys as parameters for CSI u.

formatSpecialKeys (class FormatSpecialKeys)
When modifySpecialKeys is 4 or greater, use modified form as in formatOtherKeys, for special
keys instead of the conventional form. The default is “0”.

freeBoldBox (class FreeBoldBox)
Specifies whether xterm should assume the bounding boxes for normal and bold fonts are
compatible. If “false”, xterm compares them and will reject choices of bold fonts that do not
match the size of the normal font. The default is “false”, which means that the comparison is
performed.

geometry (class Geometry)
Specifies the preferred size and position of the VTxxx window. There is no default for this
resource.

highlightColor (class HighlightColor)
Specifies the color to use for the background of selected (highlighted) text. If not specified (i.e.,
matching the default foreground), reverse video is used. The default is “XtDefaultForeground”.

highlightColorMode (class HighlightColorMode)
Specifies whether xterm should use highlightTextColor and highlightColor to override the
reversed foreground/background colors in a selection. The default is unspecified: at startup,
xterm checks if those resources are set to something other than the default foreground and
background colors. Setting this resource disables the check.

The following table shows the interaction of the highlighting resources, abbreviated as shown to
fit in this page:
HCM

highlightColorMode

HR
highlightReverse

HBG
highlightColor

HFG
highlightTextColor

Patch #403 2025-10-19 43

XTERM(1) X Window System
HCM HR HBG HFG Highlight
false false default default bg/fg
false false default set bg/fg
false false set default fg/HBG
false false set set fg/HBG
false true default default bg/fg
false true default set bg/fg
false true set default fg/HBG
false true set set fg/HBG
true false default default bg/fg
true false default set HFG/fg
true false set default bg/HBG
true false set set HFG/HBG
true true default default bg/fg
true true default set HFG/fg
true true set default fg/HBG
true true set set HFG/HBG
default false default default bg/fg
default false default set bg/fg
default false set default fg/HBG
default false set set HFG/HBG
default true default default bg/fg
default true default set bg/fg
default true set default fg/HBG
default true set set HFG/HBG

highlightReverse (class HighlightReverse)
Specifies whether xterm should reverse the selection foreground and background colors when

selecting text with reverse-video attribute.

XTERM (1)

This applies only to the highlightColor and

highlightTextColor resources, e.g., to match the color scheme of xwsh. If “true”, xterm reverses

the colors, If “false”, xterm does not reverse colors, The default is “true”.

highlightSelection (class HighlightSelection)

Tells xterm whether to highlight all of the selected positions, or only the selected text:

o If “false”, selecting with the mouse highlights all positions on the screen between the

beginning of the selection and the current position.

 If “true”, xterm highlights only the positions that contain text that can be selected.

The default is “false”.

Depending on the way your applications write to the screen, there may be trailing blanks on a
line. Xterm stores data as it is shown on the screen. Erasing the display changes the internal state
of each cell so it is not considered a blank for the purpose of selection. Blanks written since the
last erase are selectable. If you do not wish to have trailing blanks in a selection, use the
trimSelection resource.

highlightTextColor (class HighlightTextColor)

Specifies the color to use for the foreground of selected (highlighted) text. If not specified (i.e.,
matching the default background), reverse video is used. The default is “XtDefaultBackground”.

hpLowerleftBugCompat (class HpLowerleftBugCompat)
Specifies whether to work around a bug in HP’s xdb, which ignores termcap and always sends
ESC F to move to the lower left corner. “true” causes xterm to interpret ESC F as a request to

move to the lower left corner of the screen. The default is “false”.

Patch #403

2025-10-19

44

XTERM(1) X Window System XTERM(1)

i18nSelections (class I18nSelections)
If false, xterm will not request the targets COMPOUND_TEXT or TEXT. The default is “true”.
It may be set to false in order to work around ICCCM violations by other X clients.

iconBorderColor (class BorderColor)
Specifies the border color for the active icon window if this feature is compiled into xterm. Not
all window managers will make the icon border visible.

iconBorderWidth (class BorderWidth)
Specifies the border width for the active icon window if this feature is compiled into xterm. The
default is “2”. Not all window managers will make the border visible.

iconFont (class IconFont)
Specifies the font for the miniature active icon window, if this feature is compiled into xterm.
The default is “nil2”.

incrementalGraphics (class IncrementalGraphics)
When displaying SIXEL graphics, refresh the screen after processing each cell. The default is
“false”.

indicatorFormat (class IndicatorFormat)
When displaying the status line using the indicator mode (i.e., selecting DECSSDT line type 1),
format the status using this resource.

The default value of the resource displays the version of xterm, the cursor position and the
time/date:

“${version%} $S{position%} S{unixtime%}”
If a “%” marker does not match any of the three special tokens used in the default resource
setting, xterm uses strftime(3) to interpret it.

initialFont (class InitialFont)
Specifies which of the VT100 fonts to use initially. Values are the same as for the set—vt—font
action. The default is “d”, i.e., “default™.

inputMethod (class InputMethod)
Tells xterm which type of input method to use. There is no default method.

internalBorder (class BorderWidth)
Specifies the number of pixels between the characters and the window border. The default is “2”.

italicULMode (class ColorAttrMode)
Specifies whether characters with the underline attribute should be displayed in an italic font or as
underlined characters. It is implemented only for TrueType fonts.

jumpScroll (class JumpScroll)
Specifies whether or not jump scroll should be used. This corresponds to the VT102 DECSCLM
private mode. The default is “true”. See fastScroll for a variation.

keepClipboard (class KeepClipboard)
Specifies whether xterm will reuse the selection data which it copied to the clipboard rather than
asking the clipboard for its current contents when told to provide the selection. The default is
“false”.

If compiled into xterm, the menu entry Keep Clipboard allows you to change this at runtime.

keepSelection (class KeepSelection)
Specifies whether xterm will keep the selection even after the selected area was touched by some
output to the terminal. The default is “true”.

The menu entry Keep Selection allows you to change this at runtime.

Patch #403 2025-10-19 45

XTERM(1) X Window System XTERM(1)

keyboardDialect (class KeyboardDialect)
Specifies the initial keyboard dialect, as well as the default value when the terminal is reset. The
value given is the same as the final character in the control sequences which change character
sets. The default is “B”, which corresponds to US ASCII.

limitFontsets (class LimitFontsets)
Limits the number of TrueType fallback fonts (i.e., fontset) which can be tested. The default is
“50”. No more than “255” will be scanned.

This limits the number of fallback fonts which xterm uses to display characters. Because
TrueType fonts typically are small, xterm may open several fonts for good coverage, and may
open additional fonts to obtain information. You can see which font-files xterm opens by setting
the environment variable XFT_DEBUG to 3. The Xft library and xterm write this debugging
trace to the standard output.

Set this to “0” to disable fallbacks entirely.

limitFontHeight (class LimitFontHeight)
When scaling a TrueType font to provide the parts for a double-high character, xterm compares
the scaled font with the original to ensure that it is taller.

The default is “10” (percent).

limitFontWidth (class LimitFontWidth)
When looking for fallback fonts, xterm checks to see that the character to be displayed is the
same width as the primary font. If a character extends outside the font’s bounding box, xterm
will clip it, to fit.

This resource controls the amount by which the character can extend outside its bounding box
before xterm looks further for a better font.

This resource is also used in scaling TrueType fonts for double-wide characters, like
limitFontHeight for double-wide characters.

The default is “10” (percent).

limitResize (class LimitResize)
Limits resizing of the screen via control sequence to a given multiple of the display dimensions.
The default is “1”.

limitResponse (class LimitResponse)
Limits the buffer-size used when xterm replies to various control sequences. The default is
“1024”. The minimum value is “256”.

locale (class Locale)
Specifies how to use luit(1), an encoding converter between UTF-8 and locale encodings. The
resource value (ignoring case) may be:

true
Xterm will use the encoding specified by the users’ LC_CTYPE locale (i.e., LC_ALL,
LC_CTYPE, or LANG variables) as far as possible. This is realized by always enabling
UTF-8 mode and invoking /uit in non-UTF-8 locales.

medium

Xterm will follow users’ LC_CTYPE locale only for UTF-8, east Asian, and Thai locales,
where the encodings were not supported by conventional 8bit mode with changing fonts.
For other locales, xterm will use conventional 8bit mode.

checkfont
If mini-luit is compiled-in, xterm will check if a Unicode font has been specified. If so, it
checks if the character encoding for the current locale is POSIX, Latin-1 or Latin-9, uses the
appropriate mapping to support those with the Unicode font. For other encodings, xterm
assumes that UTF-8 encoding is required.

Patch #403 2025-10-19 46

XTERM(1) X Window System XTERM(1)

false
Xterm will use conventional 8bit mode or UTF-8 mode according to utf8 resource or —u8
option.

Any other value, e.g., “UTF-8" or “ISO8859-2", is assumed to be an encoding name; [uit will be
invoked to support the encoding. The actual list of supported encodings depends on [uit. The
default is “medium”.

Regardless of your locale and encoding, you need an ISO-10646-1 font to display the result.
Your configuration may not include this font, or locale-support by xterm may not be needed.

At startup, xterm uses a mechanism equivalent to the load—vt—fonts(utf8Fonts,Utf8Fonts) action
to load font name subresources of the VT100 widget. That is, resource patterns such as
“*vt100.utf8Fonts.font” will be loaded, and (if this resource is enabled), override the normal
fonts. If no subresources are found, the normal fonts such as “*vt100.font”, etc., are used.

For instance, you could have this in your resource file:

*VT100.font: 12x24
*VT100.utf8Fonts.font:9x15

When started with a UTF-8 locale, xterm would use 9x15, but allow you to switch to the 12x24
font using the menu entry “UTF-8 Fonts”.

The resource files distributed with xterm use ISO-10646-1 fonts, but do not rely on them unless
you are using the locale mechanism.

localeFilter (class LocaleFilter)
Specifies the file name for the encoding converter from/to locale encodings and UTF-8 which is
used with the —l¢ option or locale resource. The help message shown by “xterm —help” lists the
default value, which depends on your system configuration.

If the encoding converter requires command-line parameters, you can add those after the
command, e.g.,

*localeFilter: xterm—-filter -p

Alternatively, you may put those parameters within a shell script to execute the converter, and set
this resource to point to the shell script.

When using a locale-filter, e.g., with the —e option, or the shell, xterm first tries passing control
via that filter. If it fails, xterm will retry without the locale-filter. Xterm warns about the failure
before retrying.

logFile (class Logfile)
Specify the name for xterm’s log file. If no name is specified, xterm will generate a name when
logging is enabled, as described in the -1 option.

logInhibit (class LogInhibit)
If “true”, prevent the logging feature from being enabled, whether by the command-line option
-1, or the menu entry Log to File. The default is “false”.

logging (class Logging)
If “true”, (and if logInhibit is not set) enable the logging feature. This resource is set/updated by
the —1 option and the menu entry Log to File. The default is “false”.

loginShell (class LoginShell)
Specifies whether or not the shell to be run in the window should be started as a login shell. The
default is “false”.

marginBell (class MarginBell)
Specifies whether or not the bell should be rung when the user types near the right margin. The
default is “false”.

Patch #403 2025-10-19 47

XTERM(1) X Window System XTERM(1)

maxGraphicSize (class MaxGraphicSize)
If xterm is configured to support ReGIS or SIXEL graphics, this resource controls the maximum
size of a graph which can be displayed.

The default is “1000x1000” (given as width by height).
If the resource is “auto” then xterm will use the decGraphicsID resource (or decTerminallD if

that is not set):

Result decGraphicsID

768x400 125
800x460 240
800x460 241
800x480 330
800x480 340
860x750 382
800x480 other

maxStringParse (class MaxStringParse)
Xterm’s state parser recognizes several types of control strings which can contain text, e.g.,

APC (Application Program Command),
DCS (Device Control String),

OSC (Operating System Command),
PM (Privacy Message), and

SOS (Start of String),

Xterm reads these strings, accumulating them into a buffer until they are properly terminated. At
that point, xterm interprets the strings. If they happen to be DCS commands to draw ReGIS
images, these strings may be large, in the hundreds of kilobytes. A few OSC commands may be
as large as 10 kilobytes.

This resource sets a limit on the size of the buffer used for these strings. The default is “600000”
based on the features which are configured for xterm. Control strings which require larger buffer
size are ignored.

metaSendsEscape (class MetaSendsEscape)
Tells xterm what to do with input-characters modified by Meta:

o If “true”, Meta characters (a character combined with the Mera modifier key) are converted
into a two-character sequence with the character itself preceded by ESC. This applies as well
to function key control sequences, unless xterm sees that Meta is used in your key translations.

o If “false”, Meta characters input from the keyboard are handled according to the eightBitInput
resource.

The default is “False”.

mkSamplePass (class MkSamplePass)
If mkSampleSize is nonzero, and mkWidth (and cjkWidth) are false, on startup xterm compares
its built-in tables to the system’s wide character width data to decide if it will use the system’s
data. It tests the first mkSampleSize character values, and allows up to mkSamplePass
mismatches before the test fails. The default (for the allowed number of mismatches) is 655 (one
percent of the default value for mkSampleSize).

mkSampleSize (class MkSampleSize)
With mkSamplePass, this specifies a startup test used for initializing wide character width
calculations. The default (number of characters to check) is 65536.

mkWidth (class MkWidth)
Specifies whether xterm should use a built-in version of the wide character width calculation. See
also the cjkWidth resource which can override this. The default is “false”.

Patch #403 2025-10-19 48

XTERM (1)

X Window System XTERM(1)

Here is a summary of the resources which control the choice of wide character width calculation:

cjkWidth ~ mkWidth Action

false false use system tables subject to mkSamplePass
false true use built-in tables

true false use built-in CJK tables

true true use built-in CJK tables

To disable mkWidth, and use the system’s tables, set both mkSampleSize and mkSamplePass
to “0”. Doing that may make xterm more consistent with applications running in xterm, but may
omit some font glyphs whose width correctly differs from the system’s character tables.

modifyCursorKeys (class ModifyCursorKeys)

Tells how to handle the special case where Control-, Shift-, Alt- or Meta-modifiers are used to
add a parameter to the escape sequence returned by a cursor-key. X11 cursor keys are the four
keys with arrow symbols:

Left Right Up Down
as well as some commonly found on an “editing keypad”

Home Prior Page_Up Next Page_Down End Begin
The default is “2”:

—1 disables the feature.

0 uses the old/obsolete behavior, i.e., the modifier is the first parameter.

1 prefixes modified sequences with CSI.

2 forces the modifier to be the second parameter if it would otherwise be the first.

3 marks the sequence with a “>” to hint that it is private.

4 changes the format to match modifyOtherKeys 3, sending an escape sequence according

to formatCursorKeys.

modifyFunctionKeys (class ModifyFunctionKeys)

Patch #403

Tells how to handle the special case where Control-, Shift-, Alt- or Meta-modifiers are used to
add a parameter to the escape sequence returned by a (numbered) function-key. The default is
“2”. The resource values are similar to modifyCursorKeys:

—1 permits the user to use shift- and control-modifiers to construct function-key strings using
the normal encoding scheme.

0 uses the old/obsolete behavior, i.e., the modifier is the first parameter.

1 prefixes modified sequences with CSI.

2 forces the modifier to be the second parameter if it would otherwise be the first.

3 marks the sequence with a “>” to hint that it is private.

4 changes the format to match modifyOtherKeys 3, sending an escape sequence according

to formatFunctionKeys.

If modifyFunctionKeys is zero, xterm uses Control- and Shift-modifiers to allow the user to
construct numbered function-keys beyond the set provided by the keyboard:

Control
adds the value given by the ctrlFKeys resource.

Shift adds twice the value given by the ctrlFKeys resource.

Control/Shift
adds three times the value given by the ctrlFKeys resource.

2025-10-19 49

XTERM(1) X Window System XTERM(1)

modifyKeyboard (class ModifyKeyboard)
Normally xterm makes a special case regarding modifiers (shift, control, etc.) to handle special
keyboard layouts (legacy and vt220). This is done to provide compatible keyboards for DEC
VT220 and related terminals that implement user-defined keys (UDK).

The bits of the resource value selectively enable modification of the given category when these
keyboards are selected. The default is “0”:

0 The legacy/vt220 keyboards interpret only the Control-modifier when constructing
numbered function-keys. Other special keys are not modified.

1 allows modification of the numeric keypad

2 allows modification of the editing keypad

4 allows modification of function-keys, overrides use of Shift-modifier for UDK.
8 allows modification of other special keys

modifyKeypadKeys (class ModifyKeypadKeys)
Like modifyCursorKeys “4”, tells xterm to construct an escape sequence for numeric keypad
keys. The default is “0”.

modifyModifierKeys (class ModifyModifierKeys)
Like modifyCursorKeys “4”, tells xterm to construct an escape sequence for modifier (e.g.,
“shift”) keys. The default is “0”.

modifyOtherKeys (class ModifyOtherKeys)
Like modifyCursorKeys “4”, tells xterm to construct an escape sequence for ordinary (i.e.,
“other”) keys (such as “2”) when modified by Shift-, Control-, Alt- or Meta-modifiers. This
feature does not apply to special keys, i.e., cursor-, keypad-, function- or control-keys which are
labeled on your keyboard. Those have key symbols which XKB identifies uniquely.

The default is “0”:
0 disables this feature.

1 enables this feature for keys except for those with well-known behavior, e.g., Tab,
Backarrow and some special control character cases which are built into the X11 library,
e.g., Control-Space to make a NUL, or Control-3 to make an Escape character.

Except for those special cases built into the X11 library, the Shift- and Control- modifiers
are treated normally. The Alt- and Meta- modifiers do not cause xterm to send escape
sequences. Those modifier keys are interpreted according to other resources, e.g., the
metaSendsEscape resource.

2 enables this feature for keys including the exceptions listed. Xterm ignores the special
cases built into the X11 library. Any shifted (modified) ordinary key sends an escape
sequence. The Alt- and Meta- modifiers cause xterm to send escape sequences.

3 extends the feature to send unmodified keys as escape sequences.

The Xterm FAQ has an extended discussion of this feature, with examples:

https://invisible—island.net/xterm/modified—keys.html

modifySpecialKeys (class ModifySpecialKeys)
Like modifyCursorKeys “4”, tells xterm to construct an escape sequence for special keys (e.g.,
“escape” not in the other categories). The default is “0”.

multiClickTime (class MultiClickTime)
Specifies the maximum time in milliseconds between multi-click select events. The default is
“250” milliseconds.

Patch #403 2025-10-19 50

XTERM(1)

X Window System XTERM(1)

multiScroll (class MultiScroll)

Specifies whether or not scrolling should be done asynchronously. The default is “false”.

nMarginBell (class Column)

Specifies the number of characters from the right margin at which the margin bell should be rung,
when enabled by the marginBell resource. The default is “10”.

nameKeymap (class NameKeymap)

See the discussion of the keymap() action.

nextEventDelay (class NextEventDelay)

Specifies a delay time in milliseconds before checking for new X events. The default is “1”.

numColorRegisters (class NumColorRegisters)

If xterm is configured to support ReGIS or SIXEL graphics, this specifies the number of color-
registers which are available.

If this resource is not specified, xterm uses a value determined by the decTerminallD resource:

Result decTerminallD

4 125

4 240

4 241

4 330

16 340

2 382
1024 other

numLock (class NumLock)

If “true”, xterm checks if NumLock is used as a modifier (see xmodmap(1)). If so, this modifier
is used to simplify the logic when implementing special NumLock for the sunKeyboard
resource. Also (when sunKeyboard is false), similar logic is used to find the modifier associated
with the left and right Alt keys. The default is “true”.

oldXtermFKeys (class OldXtermFKeys)

If “true”, xterm will use old-style (X11RS) escape sequences for function keys F1 to F4, for
compatibility with X Consortium xterm. Otherwise, it uses the VT100 codes for PF1 to PF4.
The default is “false”.

Setting this resource has the same effect as setting the keyboardType to legacy. The
keyboardType resource is the preferred mechanism for selecting this mode.

The old-style escape sequences resemble VT220 keys, but appear to have been invented for xterm
in X11R4.

on2Clicks (class On2Clicks)
on3Clicks (class On3Clicks)
on4Clicks (class On4Clicks)
on5Clicks (class On5Clicks)

Patch #403

Specify selection behavior in response to multiple mouse clicks. A single mouse click is always
interpreted as described in the Selection Functions section (see POINTER USAGE). Multiple
mouse clicks (using the button which activates the select—start action) are interpreted according
to the resource values of on2Clicks, etc. The resource value can be one of these:

word
Select a “word” as determined by the charClass resource. See the CHARACTER
CLASSES section.

If the pointer is on a “word” then xterm searches back to the beginning of the word, and then
to the end.

2025-10-19 51

XTERM(1)

X Window System XTERM(1)

If the pointer is not on a “word” then the result depends on whether it is on whitespace
(including a newline), or past the end of the line. In the latter case xterm may select a “word”
beginning after the newline, if there is no additional whitespace.

line
Select a line (counting wrapping).

group
Select a group of adjacent lines (counting wrapping). The selection stops on a blank line, and
does not extend outside the current page.

page
Select all visible lines, i.e., the page.

all
Select all lines, i.e., including the saved lines.

regex
Select the best match for the POSIX extended regular expression (ERE) which follows in the
resource value:

* Xterm matches the regular expression against a byte array for the entire (possibly wrapped)
line. That byte array may be UTF-8 or ISO-8859-1, depending on the mode in which
Xterm is running.

* Xterm steps through each byte-offset in this array, keeping track of the best (longest)
match. If more than one match ties for the longest length, the first is used.

Xterm does this to make it convenient to click anywhere in the area of interest and cause
the regular expression to match the entire word, etc.

e The “*” and “$” anchors in a regular expression denote the ends of the entire line.

* If the regular expression contains backslashes “\” those should be escaped “\\” because the
X libraries interpret backslashes in resource strings.

none
No selection action is associated with this resource. Xterm interprets it as the end of the list.
For example, you may use it to disable triple (and higher) clicking by setting on3Clicks to
“none”.

The default values for on2Clicks and on3Clicks are “word” and “line”, respectively. There is no
default value for on4Clicks or on5Clicks, making those inactive. On startup, xterm determines
the maximum number of clicks by the onXClicks resource values which are set.

openlm (class Openlm)

Tells xterm whether to open the input method at startup. The default is “true”.

pointerColor (class PointerColor)

Specifies the foreground color of the pointer. The default is “XtDefaultForeground”.

pointer ColorBackground (class PointerColorBackground)

Specifies the background color of the pointer. The default is “XtDefaultBackground”.

pointerFont (class PointerFont)

Specifies the font to be used for the pointer. The shapes specified by pointerShape are glyphs in
this font. The resource value default is cursor.

pointerMode (class PointerMode)

Patch #403

Specifies when the pointer may be hidden as the user types. It will be redisplayed if the user
moves the mouse, or clicks one of its buttons.

0 never

2025-10-19 52

XTERM(1) X Window System XTERM(1)

1 the application running in xterm has not activated mouse mode. This is the default.
2 always.

pointerShape (class Cursor)
Specifies the name of the shape of the pointer. The default is “xterm”.

Other shapes can be selected. Here is a list of the “core” (i.e., standard) names extracted from
<X11/cursorfont.h>:

X_cursor, arrow, based_arrow_down, based_arrow_up, boat, bogosity, bottom_left_corner,
bottom_right_corner, bottom_side, bottom_tee, box_spiral, center_ptr, circle, clock,
coffee_mug, cross, cross_reverse, crosshair, diamond_cross, dot, dotbox, double_arrow,
draft_large, draft_small, draped_box, exchange, fleur, gobbler, gumby, hand1, hand2, heart,
icon, iron_cross, left_ptr, left_side, left tee, leftbutton, 1l_angle, Ir_angle, man,
middlebutton, mouse, pencil, pirate, plus, question_arrow, right_ptr, right_side, right_tee,
rightbutton, rtl_logo, sailboat, sb_down_arrow, sb_h_double_arrow, sb_left_arrow,
sb_right_arrow, sb_up_arrow, sb_v_double_arrow, shuttle, sizing, spider, spraycan, star,
target, tcross, top_left_arrow, top_left_corner, top_right_corner, top_side, top_tee, trek,
ul_angle, umbrella, ur_angle, watch, xterm

If you are using a cursor theme, expect it to provide about a third of those names, while adding
others.

popOnBell (class PopOnBell)
Specifies whether the window would be raised when Control-G is received. The default is
“false”.

If the window is iconified, this has no effect. However, the zIconBeep resource provides you
with the ability to see which iconified windows have sounded a bell.

precompose (class Precompose)
Tells xterm whether to precompose UTF-8 data into Normalization Form C, which combines
commonly-used accents onto base characters. If it does not do this, accents are left as separate
characters. The default is “true”.

preeditType (class PreeditType)
Tells xterm which types of preedit (preconversion) string to display. The default is
“OverTheSpot,Root”.

preferLatinl (class PreferLatinl)
Tells xterm whether to use DEC Supplemental Graphic, or ISO Latin-1 for the user-preferred
supplemental set (UPSS) when initializing character sets. The former is the documented setting
for hardware terminals, but the latter is expected by most users. The default is “true” (ISO
Latin-1).

printAttributes (class PrintAttributes)
Specifies whether to print graphic attributes along with the text. A real DEC VTxxx terminal will
print the underline, highlighting codes but your printer may not handle these.

e ““0” disables the attributes.

e “1” prints the normal set of attributes (bold, underline, inverse and blink) as VT100-style
control sequences.

e “2” prints ANSI color attributes as well.
The default is “1”.

printFileImmediate (class PrintFileImmediate)
When the print-immediate action is invoked, xterm prints the screen contents directly to a file.
Set this resource to the prefix of the filename (a timestamp will be appended to the actual name).

The default is an empty string, i.e., “”’, However, when the print—-immediate action is invoked, if
the string is empty, then “XTerm” is used.

Patch #403 2025-10-19 53

XTERM(1) X Window System XTERM(1)

printFileOnXError (class PrintFileOnXError)
If xterm exits with an X error, e.g., your connection is broken when the server crashes, it can be
told to write the contents of the screen to a file. To enable the feature, set this resource to the
prefix of the filename (a timestamp will be appended to the actual name).

3

The default is an empty string, i.e., “”, which disables this feature. However, when the
print—on—error action is invoked, if the string is empty, then “XTermError” is used.

These error codes are handled: ERROR_XERROR, ERROR_XIOERROR and
ERROR_ICEERROR.

printModeImmediate (class PrintModeImmediate)
When the print-immediate action is invoked, xterm prints the screen contents directly to a file.
You can use the printModeImmediate resource to tell it to use escape sequences to reconstruct
the video attributes and colors. This uses the same values as the printAttributes resource. The
default is “0”.

printModeOnXError (class PrintModeOnXError)
Xterm implements the printFileOnXError feature using the printer feature, although the output
is written directly to a file. You can use the printModeOnXError resource to tell it to use
escape sequences to reconstruct the video attributes and colors. This uses the same values as the
printAttributes resource. The default is “0”.

printOptsImmediate (class PrintOptsImmediate)
Specify the range of text which is printed to a file when the print—-immediate action is invoked.

e If zero (0), then this selects the current (visible screen) plus the saved lines, except if the
alternate screen is being used. In that case, only the alternate screen is selected.

* If nonzero, the bits of this resource value (checked in descending order) select the range:
8 selects the saved lines.
4 selects the alternate screen.
2 selects the normal screen.
1 selects the current screen, which can be either the normal or alternate screen.

The default is “9”, which selects the current visible screen plus saved lines, with no special case
for the alternated screen.

printOptsOnXError (class PrintOptsOnXError)
Specify the range of text which is printed to a file when the print—on—error action is invoked.
The resource value is interpreted the same as in printOptsImmediate.

The default is “9”, which selects the current visible screen plus saved lines, with no special case
for the alternated screen.

printRawChars (class PrintRawChars)
If “true”, xterm allows Unicode non-characters to be printed.

printerAutoClose (class PrinterAutoClose)
If “true”, xterm will close the printer (a pipe) when the application switches the printer offline
with a Media Copy command. The default is “false”.

printerCommand (class PrinterCommand)
Specifies a shell command to which xterm will open a pipe when the first MC (Media Copy)
command is initiated. The default is an empty string, i.e., “”. If the resource value is given as an
empty string, the printer is disabled.

printerControlMode (class PrinterControlMode)
Specifies the printer control mode. A “1” selects autoprint mode, which causes xterm to print a
line from the screen when

Patch #403 2025-10-19 54

XTERM(1) X Window System XTERM(1)

* you move the cursor off that line with a line feed, form feed or vertical tab character, or
e an autowrap occurs.

Autoprint mode is overridden by printer controller mode (a “2”), which causes all of the output to
be directed to the printer. The default is “0”.

printerExtent (class PrinterExtent)
Controls whether a print page function will print the entire page (true), or only the portion within
the scrolling margins (false). The default is “false”.

printerFormFeed (class PrinterFormFeed)
Controls whether a form feed is sent to the printer at the end of a print page function. The default
is “false”.

printerNewLine (class PrinterNewLine)
Controls whether a newline is sent to the printer at the end of a print page function. The default
is “true”.

privateColorRegisters (class PrivateColorRegisters)
If xterm is configured to support ReGIS or SIXEL graphics, this controls whether xterm allocates
separate color registers for each sixel device control string, e.g., for DECGCI. If not true, color
registers are allocated only once, when the terminal is reset, and color changes in any graphic
affect all graphics. The default is “true”.

quietGrab (class QuietGrab)
Controls whether the cursor is repainted when NotifyGrab and NotifyUngrab event types are
received during change of focus. The default is “false”.

regisDefaultFont (class RegisDefaultFont)
If xterm is configured to support ReGIS graphics, this resource tells xterm which font to use if the
ReGIS data does not specify one. No default value is specified; xterm accepts a TrueType font
specification as in the faceName resource.

If no value is specified, xterm draws a bitmap indicating a missing character.

regisScreenSize (class RegisScreenSize)
If xterm is configured to support ReGIS graphics, this resource tells xterm the default size (in
pixels) for these graphics, which also sets the default coordinate space to [0,0] (upper-left) and
[width,height] (lower-right).

The application using ReGIS may use the “A” option of the “S” command to adjust the
coordinate space or change the addressable portion of the screen.

Xterm accepts a special resource value “auto”, which tells xterm to use the decGraphicsID and
decTerminalID resources to set the default size based on the hardware terminal’s limits. Those
limits are the same as for the maxGraphicSize resource.

The default is “auto’.

renderFont (class RenderFont)
If xterm is built with the Xft library, this controls whether the faceName resource is used. The
default is “default”.

The resource values are strings, evaluated as booleans after startup.

false
disable the feature and use the normal (bitmap) font.

true
startup using the TrueType font specified by the faceName and faceSize resource settings.
If there is no value for faceName, disable the feature and use the normal (bitmap) font.

After startup, you can still switch to/from the bitmap font using the “TrueType Fonts”
menu entry.

Patch #403 2025-10-19 55

XTERM(1) X Window System XTERM(1)

default
Enable the “TrueType Fonts” menu entry to allow runtime switching to/from TrueType
fonts. The initial font used depends upon whether the faceName resource is set:

* If the faceName resource is not set, start by using the normal (bitmap) font. Xterm has a
separate compiled-in value for faceName for this special case. That is normally
“mono”.

 If the faceName resource is set, then start by using the TrueType font rather than the
bitmap font.

defaultOff
Enable the “TrueType Fonts” menu entry to allow runtime switching to/from TrueType
fonts, but allow it to be initially unselected if no faceName resource was given.

resizeByPixel (class ResizeByPixel)
Set this “true” to disable hints to the window manager that request resizing by character rather
than pixels.

Most window managers provide visual feedback showing the size of a window as you resize it,
using these hints. When you maximize xterm, it disables those hints to allow the window
manager to make better use of fractional rows or columns. Setting this resource disables the hints
all the time.

The default is “false”.

resizeGravity (class ResizeGravity)
Affects the behavior when the window is resized to be taller or shorter.

NorthWest
The top line of text on the screen should not move. If the window is made shorter, lines are
dropped from the bottom; if the window is made taller, blank lines are added at the bottom.
This is compatible with the behavior in X11R4.

SouthWest
The bottom line of text on the screen should not move (the default). If the window is made
taller, additional saved lines will be scrolled down onto the screen; if the window is made
shorter, lines will be scrolled off the top of the screen, and the top saved lines will be dropped.

retryInputMethod (class RetryInputMethod)
Tells xterm how many times to retry, in case the input-method server is not responding. This is a
different issue than unsupported preedit type, etc. You may encounter retries if your X
configuration (and its libraries) are missing pieces. Setting this resource to zero “0” will cancel
the retrying. The default is “3”.

reverseVideo (class ReverseVideo)
Specifies whether or not reverse video should be simulated. The default is “false”.

There are several aspects to reverse video in xterm:

* The command-line —rv option tells the X libraries to reverse the foreground and background
colors. Xterm’s command-line options set resource values. In particular, the X Toolkit sets the
reverseVideo resource when the —rv option is used.

e If the user has also used command-line options —fg or —bg to set the foreground and
background colors, xterm does not see these options directly. Instead, it examines the resource
values to reconstruct the command-line options, and determine which of the colors is the user’s
intended foreground, etc. Their actual values are irrelevant to the reverse video function; some
users prefer the X defaults (black text on a white background), others prefer white text on a
black background.

Patch #403 2025-10-19 56

XTERM(1) X Window System XTERM(1)

» After startup, the user can toggle the “Enable Reverse Video” menu entry. This exchanges the
current foreground and background colors of the VT100 widget, and repaints the screen.
Because of the X resource hierarchy, the reverseVideo resource applies to more than the
VT100 widget.

Programs running in an xterm can also use control sequences to enable the VT100 reverse video
mode. These are independent of the reverseVideo resource and the menu entry. Xterm
exchanges the current foreground and background colors when drawing text affected by these
control sequences.

Other control sequences can alter the foreground and background colors which are used:

* Programs can also use the ANSI color control sequences to set the foreground and background
colors.

» Extensions to the ANSI color controls (such as 16-, 88- or 256-colors) are treated similarly to
the ANSI control.

* Using other control sequences (the “dynamic colors” feature), a program can change the
foreground and background colors.

reverseWrap (class ReverseWrap)
Specifies whether or not reverse-wraparound should be enabled. This corresponds to xterm’s
private mode 45. The default is “false”.

rightScrollBar (class RightScrollBar)
Specifies whether or not the scrollbar should be displayed on the right rather than the left. The
default is “false”.

saveLines (class SaveLines)
Specifies the number of lines to save beyond the top of the screen when a scrollbar is turned on.
The default is “1024”.

scrollBar (class ScrollBar)
Specifies whether or not the scrollbar should be displayed. The default is “false”.

scrollBarBorder (class ScrollBarBorder)
Specifies the width of the scrollbar border. Note that this is drawn to overlap the border of the
xterm window. Modifying the scrollbar’s border affects only the line between the VT100 widget
and the scrollbar. The default value is 1.

scrollKey (class ScrollCond)
Specifies whether or not pressing a key should automatically cause the scrollbar to go to the
bottom of the scrolling region. This corresponds to xterm’s private mode 1011. The default is
“false”.

scrollLines (class ScrollLines)
Specifies the number of lines that the scroll-back and scroll-forw actions should use as a
default. The default value is 1.

scrollTtyOutput (class ScrollCond)
Specifies whether or not output to the terminal should automatically cause the scrollbar to go to
the bottom of the scrolling region. The default is “true”.

selectToClipboard (class SelectToClipboard)
Tells xterm whether to use the PRIMARY or CLIPBOARD for SELECT tokens in the selection
mechanism. The set—select action can change this at runtime, allowing the user to work with

programs that handle only one of these mechanisms. The default is “false”, which tells it to use
PRIMARY.

shiftEscape (class ShiftEscape)
Xterm uses the translations resource to determine how to invoke actions for selecting and
copying text using the pointer (e.g., a mouse). It also provides a mouse protocol which can be

Patch #403 2025-10-19 57

XTERM(1) X Window System XTERM(1)

used by applications running in an xterm to detect mouse button clicks.

The mouse protocol causes xterm to send special escape sequences which allow an application to
determine if modifiers (i.e., one or more of shift, control, alt, and meta) were used.

Xterm provides this mouse protocol by interpreting button- and motion-events in the functions
which the translations resource calls for selecting and copying text:

insert-selection
select-end
select-extend
select-start
start-extend

While the mouse protocol is active, xterm reserves most of the mouse button events for sending
special escape sequences to the application. Xterm normally allows you to use the shift-key to
temporarily override this mouse protocol, permitting the selection and copying actions to be used.

The shiftEscape resource setting allows you to tell xterm whether to use the shift-key in this way
(i.e., overriding the mouse protocol). Xrerm accepts either a keyword (ignoring case) or the
number shown in parentheses:

false (0)
Mouse protocol does not send special escapes when shift-key is used.

true (1)
Mouse protocol may send special escapes when shift-key is used.

At startup, xterm analyzes the translations to see which buttons are used in the (mouse)
button-related bindings for selection and copying text. If the shift-key is not mentioned
explicitly in a button’s binding, xterm allows that button with shift-key for overriding the
mouse protocol.

always (2)
Mouse protocol can always send special escapes when shift-key is used.

never (3)
Mouse protocol will never send special escapes when shift-key is used.

Xterm interprets a control sequence which can change this setting between “true” and “false”.
The default is “false”.

shiftFonts (class ShiftFonts)
Specifies whether to enable the actions larger—vt—font() and smaller—vt—font(), which are
normally bound to the shifted KP_Add and KP_Subtract. The default is “true”.

showBlinkAsBold (class ShowBlinkAsBold)
Tells xterm whether to display text with blink-attribute the same as bold. If xterm has not been
configured to support blinking text, the default is “true”, which corresponds to older versions of
xterm, otherwise the default is “false”.

showMissingGlyphs (class ShowMissingGlyphs)
Tells xterm whether to display a box outlining places where a character has been used that the
font does not represent. The default is “true”.

showWrapMarks (class ShowWrapMarks)
For debugging xterm and applications that may manipulate the wrapped-line flag by writing text
at the right margin, show a mark on the right inner-border of the window. The mark shows which
lines have the flag set.

signallnhibit (class SignalInhibit)
Specifies whether or not the entries in the Main Options menu for sending signals to xterm
should be disallowed. The default is “false”.

Patch #403 2025-10-19 58

XTERM(1) X Window System XTERM(1)

sixelScrolling (class SixelScrolling)
If xterm is configured to support SIXEL graphics, this resource tells it whether to scroll up one
line at a time when sixels would be written past the bottom line on the window. The default is
“true” which enables scrolling.

Sixel scrolling is the opposite of DEC Sixel Display Mode (DECSDM): when one is on, the other
is off.

sixelScrollsRight (class SixelScrollsRight)
If xterm is configured to support SIXEL graphics, this resource tells it whether to scroll to the
right as needed to keep the current position visible rather than truncate the plot on the on the
right. The default is “false” which disables scrolling.

tekGeometry (class Geometry)
Specifies the preferred size and position of the Tektronix window. There is no default for this
resource.

tekInhibit (class TekInhibit)
Specifies whether or not the escape sequence to enter Tektronix mode should be ignored. The
default is “false”.

tekSmall (class TekSmall)
Specifies whether or not the Tektronix mode window should start in its smallest size if no explicit
geometry is given. This is useful when running xterm on displays with small screens. The
default is “false”.

tekStartup (class TekStartup)
Specifies whether or not xterm should start up in Tektronix mode. The default is “false”.

tiXtraScroll (class TiXtraScroll)
Specifies whether xterm should scroll to a new page when processing the i or te termcap strings,
i.e., the private modes 47, 1047 or 1049. This is only in effect if titeInhibit is “true”, because the
intent of this option is to provide a picture of the full-screen application’s display on the
scrollback without wiping out the text that would be shown before the application was initialized.

Xterm accepts either a keyword (ignoring case) or the number shown in parentheses:

false (0)
nothing is added to the scrollback.

true (1) the current screen is added to the scrollback.

trim (2) the current screen is added to the scrollback, but repeated blank lines are trimmed
(reduced to a single blank line).

The default for this resource is “false”.

titeInhibit (class TiteInhibit)
Originally specified whether or not xterm should remove #i and te termcap entries (used to switch
between alternate screens on startup of many screen-oriented programs) from the TERMCAP
string.

TERMCAP is used rarely now, but xterm supports the feature on modern systems:
» If set, xterm also ignores the escape sequence to switch to the alternate screen.

* Xterm supports terminfo in a different way, supporting composite control sequences (also
known as private modes) 1047, 1048 and 1049 which have the same effect as the original 47
control sequence.

The default for this resource is “false”.

titleModes (class TitleModes)
Tells xterm whether to accept or return window- and icon-labels in ISO-8859-1 (the default) or
UTF-8. Either can be encoded in hexadecimal:

Patch #403 2025-10-19 59

XTERM(1) X Window System XTERM(1)

» UTF-8 titles require special treatment, because they may contain bytes which can be mistaken
for control characters. Hexadecimal-encoding is supported to eliminate that possibility.

e As an alternative, you could use the allowC1Printable resource, which suppresses xterm’s
parsing of the relevant control characters (and as a result, treats those bytes as data).

The default for this resource is “0”.

Each bit (bit “0” is 1, bit “1” is 2, etc.) corresponds to one of the parameters set by the title
modes control sequence:

0 Set window/icon labels using hexadecimal
1 Query window/icon labels using hexadecimal
2 Set window/icon labels using UTF-8 (gives the same effect as the utf8Title resource).

3 Query window/icon labels using UTF-8

translations (class Translations)
Specifies the key and button bindings for menus, selections, “programmed strings”, etc. The
translations resource, which provides much of xterm’s configurability, is a feature of the
X Toolkit Intrinsics library (Xt). See the Actions section.

trimSelection (class TrimSelection)
If you set highlightSelection, you can see the text which is selected, including any trailing
spaces. Clearing the screen (or a line) resets it to a state containing no spaces. Some lines may
contain trailing spaces when an application writes them to the screen. However, you may not
wish to paste lines with trailing spaces. If this resource is true, xterm will trim trailing spaces
from text which is selected. It does not affect spaces which result in a wrapped line, nor will it
trim the trailing newline from your selection. The default is “false”.

underLine (class UnderLine)
This specifies whether or not text with the underline attribute should be underlined. It may be
desirable to disable underlining when color is being used for the underline attribute. The default
is “true”.

useBorderClipping (class UseBorderClipping)
Tell xterm whether to apply clipping when useClipping is false. Unlike useClipping, this simply
limits text to keep it within the window borders, e.g., as a refinement to the scaleHeight
workaround. The default is “false”.

useClipping (class UseClipping)
Tell xterm whether to use clipping to keep from producing dots outside the text drawing area.
Originally used to work around for overstriking effects, this is also needed to work with some
incorrectly-sized fonts. The default is “true”.

utf8 (class Utf8)
This specifies whether xterm will run in UTF-8 mode. If you set this resource, xterm also sets the
wideChars resource as a side-effect. The resource can be set via the menu entry “UTF-8
Encoding”. The default is “default”.

Xterm accepts either a keyword (ignoring case) or the number shown in parentheses:

false (0)
UTF-8 mode is initially off. The command-line option +u8 sets the resource to this value.
Escape sequences for turning UTF-8 mode on/off are allowed.

true (1)
UTF-8 mode is initially on. Escape sequences for turning UTF-8 mode on/off are allowed.

always (2)
The command-line option —u8 sets the resource to this value. Escape sequences for turning
UTF-8 mode on/off are ignored.

Patch #403 2025-10-19 60

XTERM(1)

X Window System XTERM(1)

default (3)
This is the default value of the resource. It is changed during initialization depending on
whether the locale resource was set, to false (0) or always (2). See the locale resource for
additional discussion of non-UTF-8 locales.

If you want to set the value of utf8, it should be in this range. Other nonzero values are treated
the same as “1”, i.e., UTF-8 mode is initially on, and escape sequences for turning UTF-8 mode
on/off are allowed.

utf8Fonts (class Utf8Fonts)

See the discussion of the locale resource. This specifies whether xterm will use UTF-8 fonts
specified via resource patterns such as “*vt100.utf8Fonts.font” or normal (ISO-8859-1) fonts via
patterns such as “*vt100.font”. The resource can be set via the menu entry “UTF-8 Fonts”.
The default is “default”.

Xterm accepts either a keyword (ignoring case) or the number shown in parentheses:

false (0)
Use the ISO-8859-1 fonts. The menu entry is enabled, allowing the choice of fonts to be
changed at runtime.

true (1) Use the UTF-8 fonts. The menu entry is enabled, allowing the choice of fonts to be
changed at runtime.

always (2)
Always use the UTF-8 fonts. This also disables the menu entry.

default (3)

At startup, the resource is set to true or false, according to the effective value of the utf8
resource.

utf8Latin1 (class Utf8Latin1)

If true, allow an ISO-8859-1 normal font to be combined with an ISO-10646-1 font if the latter is
given via the —fw option or its corresponding resource value. The default is “false”.

utf8SelectTypes (class Utf8SelectTypes)

Override xterm’s default selection target list (see SELECT/PASTE) for selections in wide-
character (UTF-8) mode. The default is an empty string, i.e., “’, which does not override
anything.

utf8Title (class Utf8Title)

Patch #403

Applications can set xterm’s title by writing a control sequence. Normally this control sequence
follows the VT220 convention, which encodes the string in ISO-8859-1 and allows for an 8-bit
string terminator. If xterm is started in a UTF-8 locale, it translates the ISO-8859-1 string to
UTF-8 to work with the X libraries which assume the string is UTF-8.

However, some users may wish to write a title string encoded in UTF-8. The window manager is
responsible for drawing window titles. Some window managers (not all) support UTF-8
encoding of window titles. Set this resource to “true” to also set UTF-8 encoded title strings
using the EWMH properties.

This feature is available as a menu entry, since it is related to the particular applications you are
running within xterm. You can also use a control sequence (see the discussion of “Title Modes”
in Xterm Control Sequences), to set an equivalent flag (which can also be set using the
titleModes resource).

Xterm accepts either a keyword (ignoring case) or the number shown in parentheses:

false (0)
Set only ISO-8859-1 title strings, e.g., using the ICCCM WM_NAME STRING
property. The menu entry is enabled, allowing the choice of title-strings to be changed
at runtime.

2025-10-19 61

XTERM(1) X Window System XTERM(1)

true (1) Set both the EWMH (UTF-8 strings) and the ICCCM WM_NAME, etc. The menu
entry is enabled, allowing the choice to be changed at runtime.

always (2)
Always set both the EWMH (UTF-8 strings) and the ICCCM WM_NAME, etc. This
also disables the menu entry.

default (3)
At startup, the resource is set to true or false, according to the effective value of the utf8
resource.

The default is “default”.

utf8Weblike (class Utf8§ Weblike)
Provide an alternate error-handling scheme for ill-formed UTF-8 as recommended in a W3C
document. The Unicode standard does not require this for conformance. Some additional
information can be found here:

https://invisible—island.net/xterm/bad—utf8/
The default is “false”.

veryBoldColors (class VeryBoldColors)
Specifies whether to combine video attributes with colors specified by colorBD, colorBL,
colorIT, colorRV, and colorUL. The resource value is the sum of values for each attribute:
1 for reverse,
2 for underline,
4 for bold,
8 for blink, and
512 for italic

The default is “0”.

visualBell (class VisualBell)
Specifies whether or not a visible bell (i.e., flashing) should be used instead of an audible bell
when Control-G is received. The default is “false”, which tells xterm to use an audible bell.

visualBellDelay (class VisualBellDelay)
Number of milliseconds to delay when displaying a visual bell. Default is 100. If set to zero, no
visual bell is displayed. This is useful for very slow displays, e.g., an LCD display on a laptop.

visualBellLine (class VisualBellLine)
Specifies whether to flash only the current line when displaying a visual bell rather than flashing
the entire screen: The default is “false”, which tells xterm to flash the entire screen.

vt100Graphics (class VIT100Graphics)
This specifies whether xterm will interpret VT100 graphic character escape sequences while in
UTF-8 mode. This feature also applies to code-pages (e.g., for VIT320 and VT520) and National
Replacement Character Sets (VT220 and up), but not US-ASCII (the initially selected character
set), to avoid conflict with UTF-8. The default is “true”, to provide support for various legacy
applications.

wideBoldFont (class WideBoldFont)
This option specifies the font to be used for displaying bold wide text. By default, it will attempt
to use a font twice as wide as the font that will be used to draw bold text. If no double-width font
is found, it will improvise, by stretching the bold font.

wideChars (class WideChars)
Specifies if xterm should respond to control sequences that process 16-bit characters. The default
is “false”.

Patch #403 2025-10-19 62

XTERM(1) X Window System XTERM(1)

wideFont (class WideFont)
This option specifies the font to be used for displaying wide text. By default, it will attempt to
use a font twice as wide as the font that will be used to draw normal text. If no double-width font
is found, it will improvise, by stretching the normal font.

xftMaxGlyphMemory (class XftMaxGlyphMemory)
Set the Xft library’s limit on glyph memory (typically 4Mb). When it reaches this limit, it
discards “randomly chosen” glyphs to make room for new ones. The default is “0” to use Xft’s
default value.

xftMaxUnrefFonts (class XftMaxUnrefFonts)
Set the Xft library’s limit on fonts which have been loaded (typically 16), e.g., matching patterns
for fallback searches, but are not actually used. The default is “0” to use Xft’s default value.

xftTrackMemUsage (class XftTrackMemUsage)
Enables glyph memory tracking (introduced in Xft 2.3.5), which allows Xft to efficiently discard
obsolete data when running short of memory. The default is “false”.

ximFont (class XimFont)
This option specifies the font to be used for displaying the preedit string in the “OverTheSpot”
input method.

In “OverTheSpot” preedit type, the preedit (preconversion) string is displayed at the position of
the cursor. It is the XIM server’s responsibility to display the preedit string. The XIM client
must inform the XIM server of the cursor position. For best results, the preedit string must be
displayed with a proper font. Therefore, xterm informs the XIM server of the proper font. The
font is be supplied by a "fontset", whose default value is “*”. This matches every font, the X
library automatically chooses fonts with proper charsets. The ximFont resource is provided to
override this default font setting.

Tek4014 Widget Resources
The following resources are specified as part of the tek4014 widget (class Tek4014). These are specified by
patterns such as “XTerm.tek4014.NAME”:

font2 (class Font)
Specifies font number 2 to use in the Tektronix window.

font3 (class Font)
Specifies font number 3 to use in the Tektronix window.

fontLarge (class Font)
Specifies the large font to use in the Tektronix window.

fontSmall (class Font)
Specifies the small font to use in the Tektronix window.

ginTerminator (class GinTerminator)
Specifies what character(s) should follow a GIN report or status report. The possibilities are
“none”, which sends no terminating characters, “CRonly”, which sends CR, and “CR&EOT”,
which sends both CR and EOT. The default is “none”.

height (class Height)
Specifies the height of the Tektronix window in pixels.

initialFont (class InitialFont)
Specifies which of the four Tektronix fonts to use initially. Values are the same as for the
set—tek—text action. The default is “large”.

width (class Width)
Specifies the width of the Tektronix window in pixels.

Patch #403 2025-10-19 63

XTERM(1) X Window System XTERM(1)

Menu Resources
The resources that may be specified for the various menus are described in the documentation for the
Athena SimpleMenu widget. The name and classes of the entries in each of the menus are listed below.
Resources named “lineN” where N is a number are separators with class SmeLine.

As with all X resource-based widgets, the labels mentioned are customary defaults for the application.
The Main Options menu (widget name mainMenu) has the following entries:

toolbar (class SmeBSB)
This entry invokes the set—toolbar(toggle) action.

securekbd (class SmeBSB)
This entry invokes the secure() action.

allowsends (class SmeBSB)
This entry invokes the allow—send—events(foggle) action.

redraw (class SmeBSB)
This entry invokes the redraw() action.

logging (class SmeBSB)
This entry invokes the logging(roggle) action.

print—immediate (class SmeBSB)
This entry invokes the print—-immediate() action.

print—on—error (class SmeBSB)
This entry invokes the print—on—error() action.

print (class SmeBSB)
This entry invokes the print() action.

print-redir (class SmeBSB)
This entry invokes the print-redir() action.

dump-html (class SmeBSB)
This entry invokes the dump—html() action.

dump-svg (class SmeBSB)
This entry invokes the dump-svg() action.

8—bit—control (class SmeBSB)
This entry invokes the set—8—bit—control(toggle) action.

backarrow key (class SmeBSB)
This entry invokes the set—backarrow(toggle) action.

num-lock (class SmeBSB)
This entry invokes the set—num-lock(foggle) action.

alt—esc (class SmeBSB)
This entry invokes the alt—sends—escape(foggle) action.

meta—esc (class SmeBSB)
This entry invokes the meta—sends—escape(toggle) action.

delete—is—del (class SmeBSB)
This entry invokes the delete—is—del(roggle) action.

oldFunctionKeys (class SmeBSB)
This entry invokes the set—old—function—keys(toggle) action.

hpFunctionKeys (class SmeBSB)
This entry invokes the set—hp—function-keys(roggle) action.

Patch #403 2025-10-19 64

XTERM(1) X Window System XTERM(1)

scoFunctionKeys (class SmeBSB)
This entry invokes the set—sco—function—keys(toggle) action.

sunFunctionKeys (class SmeBSB)
This entry invokes the set—sun—function-keys(foggle) action.

sunKeyboard (class SmeBSB)
This entry invokes the sunKeyboard(roggle) action.

suspend (class SmeBSB)
This entry invokes the send—signal(zszp) action on systems that support job control.

continue (class SmeBSB)
This entry invokes the send—signal(cont) action on systems that support job control.

interrupt (class SmeBSB)
This entry invokes the send—signal(int) action.

hangup (class SmeBSB)
This entry invokes the send—signal(/up) action.

terminate (class SmeBSB)
This entry invokes the send—signal(zerm) action.

kill (class SmeBSB)
This entry invokes the send—signal(kill) action.

quit (class SmeBSB)
This entry invokes the quit() action.

The VT Options menu (widget name vtMenu) has the following entries:

scrollbar (class SmeBSB)
This entry invokes the set—scrollbar(foggle) action.

jumpscroll (class SmeBSB)
This entry invokes the set—jumpscroll(foggle) action.

reversevideo (class SmeBSB)
This entry invokes the set—-reverse—video(foggle) action.

autowrap (class SmeBSB)
This entry invokes the set—autowrap(foggle) action.

reversewrap (class SmeBSB)
This entry invokes the set—reversewrap(toggle) action.

autolinefeed (class SmeBSB)
This entry invokes the set—autolinefeed(soggle) action.

appcursor (class SmeBSB)
This entry invokes the set—appcursor(foggle) action.

appkeypad (class SmeBSB)
This entry invokes the set—appkeypad(toggle) action.

scrollkey (class SmeBSB)
This entry invokes the set—scroll-on—key(foggle) action.

scrollttyoutput (class SmeBSB)
This entry invokes the set—scroll-on—tty—output(zoggle) action.

allow132 (class SmeBSB)
This entry invokes the set—allow132(toggle) action.

cursesemul (class SmeBSB)
This entry invokes the set—cursesemul(foggle) action.

Patch #403 2025-10-19 65

XTERM(1) X Window System XTERM(1)

keepSelection (class SmeBSB)
This entry invokes the set—keep—selection(toggle) action.

selectToClipboard (class SmeBSB)
This entry invokes the set—keep—clipboard(toggle) action.

visualbell (class SmeBSB)
This entry invokes the set—visual-bell(toggle) action.

belllsUrgent (class SmeBSB)
This entry invokes the set—belllsUrgent(foggle) action.

poponbell (class SmeBSB)
This entry invokes the set—pop—on—bell(toggle) action.

cursorblink (class SmeBSB)
This entry invokes the set—cursorblink(toggle) action.

titeInhibit (class SmeBSB)
This entry invokes the set—titeInhibit(toggle) action.

activeicon (class SmeBSB)
This entry toggles active icons on and off if this feature was compiled into xterm. It is enabled
only if xterm was started with the command line option +ai or the activelcon resource is set to

tE)

“true”.

softreset (class SmeBSB)
This entry invokes the soft—reset() action.

hardreset (class SmeBSB)
This entry invokes the hard—reset() action.

clearsavedlines (class SmeBSB)
This entry invokes the clear—saved—lines() action.

tekshow (class SmeBSB)
This entry invokes the set—visibility(zek,toggle) action.

tekmode (class SmeBSB)
This entry invokes the set—terminal—type(zek) action.

vthide (class SmeBSB)
This entry invokes the set—visibility(vz, off) action.

altscreen (class SmeBSB)
This entry invokes the set—altscreen(foggle) action.

sixelScrolling (class SmeBSB)
This entry invokes the set—sixel-scrolling(foggle) action.

privateColorRegisters (class SmeBSB)
This entry invokes the set—private—colors(foggle) action.

The VT Fonts menu (widget name fontMenu) has the following entries:

fontdefault (class SmeBSB)
This entry invokes the set—vt—font(d) action, setting the font using the font (default) resource,
e.g., “Default” in the menu.

font1 (class SmeBSB)
This entry invokes the set—vt—font(/) action, setting the font using the fontl resource, e.g.,
“Unreadable” in the menu.

font2 (class SmeBSB)
This entry invokes the set—vt—font(2) action, setting the font using the font2 resource, e.g.,
“Tiny” in the menu.

Patch #403 2025-10-19 66

XTERM(1) X Window System XTERM(1)

font3 (class SmeBSB)
This entry invokes the set—vt—font(3) action, setting the font using the font3 resource, e.g.,
“Small” in the menu.

font4 (class SmeBSB)
This entry invokes the set—vt—font(4) action, letting the font using the font4 resource, e.g.,
“Medium” in the menu.

font5 (class SmeBSB)
This entry invokes the set—vt—font(5) action, letting the font using the font5 resource, e.g.,
“Large” in the menu.

font6 (class SmeBSB)
This entry invokes the set—vt—font(6) action, letting the font using the font6 resource, e.g.,
“Huge” in the menu.

font7 (class SmeBSB)
This entry invokes the set—vt—font(7) action, letting the font using the font7 resource, e.g.,
“Enormous” in the menu.

fontescape (class SmeBSB)
This entry invokes the set—vt—font(e) action.

fontsel (class SmeBSB)
This entry invokes the set—vt—font(s) action.

allow-bold—fonts (class SmeBSB)
This entry invokes the allow—bold—fonts(toggle) action.

font-linedrawing (class SmeBSB)
This entry invokes the set—font—linedrawing(s) action.

font—packed (class SmeBSB)
This entry invokes the set—font—packed(s) action.

font—doublesize (class SmeBSB)
This entry invokes the set—font—doublesize(s) action.

render—font (class SmeBSB)
This entry invokes the set—render—font(s) action.

utf8—fonts (class SmeBSB)
This entry invokes the set—utf8—fonts(s) action.

utf8—mode (class SmeBSB)
This entry invokes the set—utf8—mode(s) action.

utf8-title (class SmeBSB)
This entry invokes the set—utf8—title(s) action.

allow—color—ops (class SmeBSB)
This entry invokes the allow—color—ops(toggle) action.

allow—font—ops (class SmeBSB)
This entry invokes the allow—font—ops(toggle) action.

allow—mouse—ops (class SmeBSB)
This entry invokes the allow—mouse—ops(toggle) action.

allow—tcap—ops (class SmeBSB)
This entry invokes the allow—tcap—ops(foggle) action.

allow—title—ops (class SmeBSB)
This entry invokes the allow—title—ops(foggle) action.

Patch #403 2025-10-19 67

XTERM(1) X Window System XTERM(1)

allow—window—ops (class SmeBSB)
This entry invokes the allow—window—ops(foggle) action.

The Tek Options menu (widget name tekMenu) has the following entries:

tektextlarge (class SmeBSB)
This entry invokes the set—tek—text(large) action.

tektext2 (class SmeBSB)
This entry invokes the set—tek—text(2) action.

tektext3 (class SmeBSB)
This entry invokes the set—tek—text(3) action.

tektextsmall (class SmeBSB)
This entry invokes the set—tek—text(small) action.

tekpage (class SmeBSB)
This entry invokes the tek—page() action.

tekreset (class SmeBSB)
This entry invokes the tek—reset() action.

tekcopy (class SmeBSB)
This entry invokes the tek—copy() action.

vtshow (class SmeBSB)
This entry invokes the set—visibility(vz,toggle) action.

vtmode (class SmeBSB)
This entry invokes the set—terminal—type(vt) action.

tekhide (class SmeBSB)
This entry invokes the set—visibility(zek,toggle) action.

Scrollbar Resources
The following resources are useful when specified for the Athena Scrollbar widget:

background (class Background)
Specifies the color to use for the background of the scrollbar.

foreground (class Foreground)
Specifies the color to use for the foreground of the scrollbar.

thickness (class Thickness)
Specifies the width in pixels of the scrollbar (default: 14).

This may be overridden by the width resource.

thumb (class Thumb)
The default “thumb” pixmap used for the scrollbar is a simple checkerboard pattern alternating
pixels for foreground and background color.

width (class Width)
Specifies the width in pixels of the scrollbar (default: 0).

The widget checks the width resource first, using the thickness value if the width is zero.

POINTER USAGE

Once the VTxxx window is created, xterm allows you to select text and copy it within the same or other
windows using the pointer or the keyboard.

A “pointer” could be a mouse, touchpad or similar device. X applications generally do not care, since they
see only button events which have

* position and

Patch #403 2025-10-19 68

XTERM(1) X Window System XTERM(1)

* button up/down state
Xterm can see these events as long as it has focus.
The keyboard also supplies events, but it is less flexible than the pointer for selecting/copying text.

Events are applied to actions using the translations resource. See Actions for a complete list, and Default
Key Bindings for the built-in set of translations resources.

Selection Functions
By default, the selection functions are invoked when the pointer buttons are used with no modifiers, and
when they are used with the “shift” key. The “shift” key is special, because xterm uses that to ensure that
selection functions are still available when it is programmed to send escape sequences in one of the mouse
modes (see Xterm Control Sequences, as well as the resource disallowedMouseOps).

At startup, xterm inspects the translations resource to see which pointer buttons may be used in this way,
and remembers these buttons when deciding whether to send escape sequences or perform selection when
those buttons are used with the “shift” modifier. Other pointer buttons, e.g., typically those sent for wheel
mouse events, are not affected.

The assignment of the functions described below to keys and buttons may be changed through the resource
database; see Actions below.

Pointer button one (usually left)
is used to save text into the cut buffer:

“"Meta <BtnlDown> :select—start ()

Move the cursor to beginning of the text, and then hold the button down while moving the cursor to
the end of the region and releasing the button. The selected text is highlighted and is saved in the
global cut buffer and made the selection when the button is released:

<BtnUp>:select—-end (SELECT, CUT_BUFFERO0) \n
Normally (but see the discussion of on2Clicks, etc):
* Double-clicking selects by words.
 Triple-clicking selects by lines.
* Quadruple-clicking goes back to characters, etc.

Multiple-click is determined by the time from button up to button down, so you can change the
selection unit in the middle of a selection. Logical words and lines selected by double- or triple-
clicking may wrap across more than one screen line if lines were wrapped by xterm itself rather than
by the application running in the window. If the key/button bindings specify that an X selection is to
be made, xterm will leave the selected text highlighted for as long as it is the selection owner.

Pointer button two (usually middle)
“types” (pastes) the text from the given selection, if any, otherwise from the cut buffer, inserting it as
keyboard input:

“Ctrl "Meta <Btn2Up>:insert-selection(SELECT, CUT_BUFFERO)

Pointer button three (usually right)
extends the current selection.

“Ctrl "Meta <Btn3Down>:start—extend()

(Without loss of generality, you can swap “right” and “left” everywhere in the rest of this paragraph.)
If pressed while closer to the right edge of the selection than the left, it extends/contracts the right
edge of the selection. If you contract the selection past the left edge of the selection, xterm assumes
you really meant the left edge, restores the original selection, then extends/contracts the left edge of
the selection. Extension starts in the selection unit mode that the last selection or extension was
performed in; you can multiple-click to cycle through them.

By cutting and pasting pieces of text without trailing new lines, you can take text from several places in

Patch #403 2025-10-19 69

XTERM(1) X Window System XTERM(1)

different windows and form a command to the shell, for example, or take output from a program and insert
it into your favorite editor. Since cut buffers are globally shared among different applications, you may
regard each as a “file” whose contents you know. The terminal emulator and other text programs should be
treating it as if it were a text file, i.e., the text is delimited by new lines.

Scrolling
The scroll region displays the position and amount of text currently showing in the window (highlighted)
relative to the amount of text actually saved. As more text is saved (up to the maximum), the size of the
highlighted area decreases.

Clicking button one with the pointer in the scroll region moves the adjacent line to the top of the display
window.

Clicking button three moves the top line of the display window down to the pointer position.

Clicking button two moves the display to a position in the saved text that corresponds to the pointer’s
position in the scrollbar.

Tektronix Pointer
Unlike the VTxxx window, the Tektronix window does not allow the copying of text. It does allow
Tektronix GIN mode, and in this mode the cursor will change from an arrow to a cross. Pressing any key
will send that key and the current coordinate of the cross cursor. Pressing button one, two, or three will
return the letters “1”, “m”, and “r”, respectively. If the “shift” key is pressed when a pointer button is
pressed, the corresponding upper case letter is sent. To distinguish a pointer button from a key, the high bit
of the character is set (but this is bit is normally stripped unless the terminal mode is RAW; see #ry(4) for

details).
SELECT/PASTE

X clients provide select and paste support by responding to requests conveyed by the X server. The X
server holds data in ‘“atoms” which correspond to the different types of selection (PRIMARY,
SECONDARY, CLIPBOARD) as well as the similar cut buffer mechanism (CUT_BUFFERO0 to
CUT_BUFFER?7). Those are documented in the ICCCM.

The ICCCM deals with the underlying mechanism for select/paste. It does not mention highlighting. The
selection is not the same as highlighting. Xterm (like many applications) uses highlighting to show you the
currently selected text. An X application may own a selection, which allows it to be the source of data
copied using a given selection atom Xferm may continue owning a selection after it stops highlighting (see
keepSelection).

Xterm provides selection data using the cells of characters which it displays. It fills those cells using
sequences of bytes and control sequences:

* By default, xterm uses UTF-8 encoding if your locale uses that encoding. The utf8 and locale resources
control that behavior.

When decoding UTF-8, xterm may compose certain base- and combining-characters. Use the
precompose resource to enable or disable this feature.

Xterm has other resources for specialized encoding needs, including allowC1Printable,
showMissingGlyphs, and utf8Weblike.

* Xterm stores base- and combining characters for each cell in its window. It does not store the sequence
of bytes which composed those characters. Selection uses the characters which xterm stores in each cell.

If the selection target accepts UTF-8, xterm copies all of the base- and combining characters to the target.
If the selection target does not accept UTF-8, e.g., to a cut buffer, xterm copies only what the target
accepts, using the defaultString resource to fill cells which cannot be represented in the target.

e All of the cells in xterm’s window are uninitialized at first. Erasing the screen makes the cells
uninitialized. Uninitialized cells are displayed as spaces.

By default, selecting rows on xterm’s window will highlight all of the cells that the pointer traverses
while you select. If the highlightSelection resource is set, xterm will not highlight trailing uninitialized

Patch #403 2025-10-19 70

XTERM(1) X Window System XTERM(1)

cells on the selected rows.

The trimSelection resource allows you to discard trailing blanks from each selected row, both from
uninitialized cells as well as those written by an application.

* As xterm writes characters in its window, and wraps text at the right margin, it remembers that the text
was wrapped. Use the showWrapMarks resource to show this in the window.

PRIMARY
When configured to use the primary selection (the default), xterm can provide the selection data in ways
which help to retain character encoding information as it is pasted.

The PRIMARY token is a standard X feature, documented in the ICCCM (Inter-Client Communication
Conventions Manual), which states

The selection named by the atom PRIMARY is used for all commands that take only a single argument
and is the principal means of communication between clients that use the selection mechanism.

A user “selects” text on xterm, which highlights the selected text. A subsequent “paste” to another client
forwards a request to the client owning the selection. If xterm owns the primary selection, it makes the data
available in the form of one or more “selection targets”. If it does not own the primary selection, e.g., if it
has released it or another client has asserted ownership, it relies on cut-buffers to pass the data. But cut-
buffers handle only ISO-8859-1 data (officially — some clients ignore the rules).

CLIPBOARD
When configured to use the clipboard (using the selectToClipboard resource), the problem with
persistence of ownership is bypassed. Otherwise, there is no difference regarding the data which can be
passed via selection.

The selectToClipboard resource is a compromise, allowing CLIPBOARD to be treated almost like
PRIMARY, unlike the ICCCM, which describes CLIPBOARD in different terms than PRIMARY or
SECONDARY. Its lengthy explanation begins with the essential points:

The selection named by the atom CLIPBOARD is used to hold data that is being transferred between
clients, that is, data that usually is being cut and then pasted or copied and then pasted. Whenever a
client wants to transfer data to the clipboard:

* It should assert ownership of the CLIPBOARD.

» If it succeeds in acquiring ownership, it should be prepared to respond to a request for the contents of
the CLIPBOARD in the usual way (retaining the data to be able to return it). The request may be
generated by the clipboard client described below.

SELECT
However, many applications use CLIPBOARD in imitation of other windowing systems. The
selectToClipboard resource (and corresponding menu entry Select to Clipboard) introduce the SELECT
token (known only to xterm) which chooses between the PRIMARY and CLIPBOARD tokens.

Without using this feature, one can use workarounds such as the xclip program to show the contents of the
X clipboard within an xterm window.

SECONDARY
This is used less often than PRIMARY or CLIPBOARD. According to the ICCCM, it is used

* As the second argument to commands taking two arguments (for example, “exchange primary and
secondary selections”)

* As ameans of obtaining data when there is a primary selection and the user does not want to disturb it

Selection Targets
The different types of data which are passed depend on what the receiving client asks for. These are termed
selection targets.

When asking for the selection data, xterm tries the following types in this order:

Patch #403 2025-10-19 71

XTERM(1) X Window System XTERM(1)

UTF8_STRING
This is an XFree86 extension, which denotes that the data is encoded in UTF-8. When xterm is
built with wide-character support, it both accepts and provides this type.

TEXT
the text is in the encoding which corresponds to your current locale.

COMPOUND_TEXT
this is a format for multiple character set data, such as multi-lingual text. It can store UTF-8
data as a special case.

STRING
This is Latin 1 (ISO-8859-1) data.

The middle two (TEXT and COMPOUND_TEXT) are added if xterm is configured with the
i18nSelections resource set to “true”.

UTF8_STRING is preferred (therefore first in the list) since xterm stores text as Unicode data when running
in wide-character mode, and no translation is needed. On the other hand, TEXT and COMPOUND_TEXT
may require translation. If the translation is incomplete, they will insert X’s “defaultString” whose value
cannot be set, and may simply be empty. Xterm’s defaultString resource specifies the string to use for
incomplete translations of the UTF8_STRING.

You can alter the types which xterm tries using the eightBitSelectTypes or utf8SelectTypes resources. For
instance, you might have some specific locale setting which does not use UTF-8 encoding. The resource
value is a comma-separated list of the selection targets, which consist of the names shown. You can use the
special name 118N to denote the optional inclusion of TEXT and COMPOUND_TEXT. The names are
matched ignoring case, and can be abbreviated. The default list can be expressed in several ways, e.g.,

UTF8_STRING,I18N,STRING
utf8,i18n,string
u,1,8

Mouse Protocol
Applications can send escape sequences to xterm to cause it to send escape sequences back to the computer
when you press a pointer button, or even (depending on which escape sequence) send escape sequences
back to the computer as you move the pointer.

These escape sequences and the responses, called the mouse protocol, are documented in X7erm Control
Sequences. They do not appear in the actions invoked by the translations resource because the resource
does not change while you run xterm, whereas applications can change the mouse prototol (i.e., enable,
disable, use different modes).

However, the mouse protocol is interpreted within the actions that are usually associated with the pointer
buttons. Xterm ignores the mouse protocol in the insert—selection action if the shift-key is pressed at the
same time. It also modifies a few other actions if the shift-key is pressed, e.g., suppressing the response
with the pointer position, though not eliminating changes to the selected text.

MENUS
Xterm has four menus, named mainMenu, vtMenu, fontMenu, and tekMenu. Each menu pops up under the
correct combinations of key and button presses. Each menu is divided into sections, separated by a
horizontal line. Some menu entries correspond to modes that can be altered. A check mark appears next to
a mode that is currently active. Selecting one of these modes toggles its state. Other menu entries are
commands; selecting one of these performs the indicated function.

All of the menu entries correspond to X actions. In the list below, the menu label is shown followed by the
action’s name in parenthesis.

Main Options
The xterm mainMenu pops up when the “control” key and pointer button one are pressed in a window. This
menu contains items that apply to both the VTxxx and Tektronix windows. There are several sections:

Patch #403 2025-10-19 72

XTERM(1) X Window System XTERM(1)

Commands for managing X events:

Toolbar (resource toolbar)
Clicking on the “Toolbar” menu entry hides the toolbar if it is visible, and shows it if it is
not.

Secure Keyboard (resource securekbd)
The Secure Keyboard mode is helpful when typing in passwords or other sensitive data
in an unsecure environment (see SECURITY below, but read the limitations carefully).

Allow SendEvents (resource allowsends)
Specifies whether or not synthetic key and button events generated using the X protocol
SendEvent request should be interpreted or discarded. This corresponds to the
allowSendEvents resource.

Redraw Window (resource redraw)
Forces the X display to repaint; useful in some environments.

Commands for capturing output:

Log to File (resource logging)
Captures text sent to the screen in a log file, as in the I logging option.

Print-All Immediately (resource print—-immediate)
Invokes the print—immediate action, sending the text of the current window directly to a
file, as specified by the printFilelmmediate, printModeImmediate and
printOptsImmediate resources.

Print-All on Error (resource print—on—error)
Invokes the print—on—error action, which toggles a flag telling xterm that if it exits with
an X error, to send the text of the current window directly to a file, as specified by the
printFileOnXError, printModeOnXError and printOptsOnXError resources.

Print Window (resource print)
Sends the text of the current window to the program given in the printerCommand
resource.

Redirect to Printer (resource print-redir)
This sets the printerControlMode to 0 or 2. You can use this to turn the printer on as if
an application had sent the appropriate control sequence. It is also useful for switching
the printer off if an application turns it on without resetting the print control mode.

XHTML Screen Dump (resource dump-html)
Available only when compiled with screen dump support. Invokes the dump-html
action. This creates an XHTML file matching the contents of the current screen,
including the border, internal border, colors and most attributes: bold, italic, underline,
faint, strikeout, reverse; blink is rendered as white-on-red; double underline is rendered
the same as underline since there is no portable equivalent in CSS 2.2.

The font is whatever your browser uses for preformatted (<pre>) elements. The XHTML
file references a cascading style sheet (CSS) named “xterm.css” that you can create to
select a font or override properties.

The following CSS selectors are used with the expected default behavior in the XHTML
file:

.ul for underline,

.bd for bold,

.it for italic,

.st for strikeout,

.lu for strikeout combined with underline.

In addition you may use

Patch #403 2025-10-19 73

XTERM(1)

X Window System XTERM(1)

.ev to affect even numbered lines and
.od to affect odd numbered lines.

Attributes faint, reverse and blink are implemented as style attributes setting color
properties. All colors are specified as RGB percentages in order to support displays with
10 bits per RGB.

The name of the file will be
xterm.yyyy.MM.dd.hh.mm.ss.xhtml

where yyyy, MM, dd, hh, mm and ss are the year, month, day, hour, minute and second
when the screen dump was performed (the file is created in the directory xterm is started
in, or the home directory for a login xterm).

The dump-html action can also be triggered using the Media Copy control sequence
CSI 101, for example from a shell script with

printf '\033[10i"

Only the UTF-8 encoding is supported.

SVG Screen Dump (resource dump—svg)

Available only when compiled with screen dump support. Invokes the dump—-svg action.
This creates a Scalable Vector Graphics (SVG) file matching the contents of the current
screen, including the border, internal border, colors and most attributes: bold, italic,
underline, double underline, faint, strikeout, reverse; blink is rendered as white-on-red.
The font is whatever your renderer uses for the monospace font-family. All colors are
specified as RGB percentages in order to support displays with 10 bits per RGB.

The name of the file will be
xterm.yyyy.MM.dd.hh.mm.ss.svg

where yyyy, MM, dd, hh, mm and ss are the year, month, day, hour, minute and second
when the screen dump was performed (the file is created in the directory xterm is started
in, or the home directory for a login xterm).

The dump-svg action can also be triggered using the Media Copy control sequence CSI
1 11, for example from a shell script with

printf '\033[11i"

Only the UTF-8 encoding is supported.

Modes for setting keyboard style:

Patch #403

8-Bit Controls (resource 8—bit—control)

Enabled for VT220 emulation, this controls whether xterm will send 8-bit control
sequences rather than using 7-bit (ASCII) controls, e.g., sending a byte in the range
128-159 rather than the escape character followed by a second byte. Xterm always
interprets both 8-bit and 7-bit control sequences (see Xterm Control Sequences). This
corresponds to the eightBitControl resource.

Backarrow Key (BS/DEL) (resource backarrow key)

Modifies the behavior of the backarrow key, making it transmit either a backspace (8) or
delete (127) character. This corresponds to the backarrowKey resource.

Alt/NumLock Modifiers (resource num-lock)

Controls the treatment of Alt- and NumLock-key modifiers. This corresponds to the
numLock resource.

2025-10-19 74

XTERM(1) X Window System XTERM(1)

Meta Sends Escape (resource meta—esc)
Controls whether Meta keys are converted into a two-character sequence with the
character itself preceded by ESC. This corresponds to the metaSendsEscape resource.

Delete is DEL (resource delete—is—del)
Controls whether the Delete key on the editing keypad should send DEL (127) or the
VT220-style Remove escape sequence. This corresponds to the deleteIsDEL resource.

Old Function-Keys (resource oldFunctionKeys)
HP Function-Keys (resource hpFunctionKeys)
SCO Function-Keys (resource scoFunctionKeys)
Sun Function-Keys (resource sunFunctionKeys)

VT220 Keyboard (resource sunKeyboard)
These act as a radio-button, selecting one style for the keyboard layout. The layout
corresponds to more than one resource setting: sunKeyboard, sunFunctionKeys,
scoFunctionKeys and hpFunctionKeys.

Commands for process signalling:
Send STOP Signal (resource suspend)
Send CONT Signal (resource continue)
Send INT Signal (resource interrupt)
Send HUP Signal (resource hangup)
Send TERM Signal (resource terminate)

Send KILL Signal (resource kill)
These send the SIGTSTP, SIGCONT, SIGINT, SIGHUP, SIGTERM and SIGKILL
signals respectively, to the process group of the process running under xterm (usually the
shell). The SIGCONT function is especially useful if the user has accidentally typed
CTRL-Z, suspending the process.

Quit (resource quit)
Stop processing X events except to support the —hold option, and then send a SIGHUP
signal to the process group of the process running under xterm (usually the shell).

VT Options
The xterm vtMenu sets various modes in the VTxxx emulation, and is popped up when the “control” key
and pointer button two are pressed in the VTxxx window.

VTxxx Modes:

Enable Scrollbar (resource scrollbar)
Enable (or disable) the scrollbar. This corresponds to the —sb option and the scrollBar
resource.

Enable Jump Scroll (resource jumpscroll)
Enable (or disable) jump scrolling. This corresponds to the —j option and the jumpScroll
resource.

Enable Reverse Video (resource reversevideo)
Enable (or disable) reverse-video. This corresponds to the —rv option and the
reverse Video resource.

Enable Auto Wraparound (resource autowrap)
Enable (or disable) auto-wraparound. This corresponds to the —aw option and the
autoWrap resource.

Patch #403 2025-10-19 75

XTERM(1)

Patch #403

X Window System XTERM(1)

Enable Reverse Wraparound (resource reversewrap)
Enable (or disable) reverse wraparound. This corresponds to the —rw option and the
reverseWrap resource.

Enable Auto Linefeed (resource autolinefeed)
Enable (or disable) auto-linefeed. This is the VT102 NEL function, which causes the
emulator to emit a line feed after each carriage return. There is no corresponding
command-line option or resource setting.

Enable Application Cursor Keys (resource appcursor)
Enable (or disable) application cursor keys. This corresponds to the appcursorDefault
resource. There is no corresponding command-line option.

Enable Application Keypad (resource appkeypad)
Enable (or disable) application keypad keys. This corresponds to the appkeypadDefault
resource. There is no corresponding command-line option.

Scroll to Bottom on Key Press (resource scrollkey)
Enable (or disable) scrolling to the bottom of the scrolling region on a keypress. This
corresponds to the —sk option and the scrollKey resource.

As a special case, the XON / XOFF keys (control/S and control/Q) are ignored.

Scroll to Bottom on Tty Output (resource scrollttyoutput)
Enable (or disable) scrolling to the bottom of the scrolling region on output to the
terminal. This corresponds to the —si option and the scrollTtyOutput resource.

Allow 80/132 Column Switching (resource allow132)
Enable (or disable) switching between 80 and 132 columns. This corresponds to the
—132 option and the ¢132 resource.

Keep Selection (resource keepSelection)
Tell xterm whether to disown the selection when it stops highlighting it, e.g., when an
application modifies the display so that it no longer matches the text which has been
highlighted. As long as xterm continues to own the selection for a given atom, it can
provide the corresponding text to other clients which request the selection using that
atom.

This corresponds to the keepSelection resource. There is no corresponding command-
line option.

Telling xterm to not disown the selection does not prevent other applications from taking
ownership of the selection. When that happens, xterm receives notification that this has
happened, and removes its highlighting.

See SELECT/PASTE for more information.

Select to Clipboard (resource selectToClipboard)
Tell xterm whether to use the PRIMARY or CLIPBOARD for SELECT tokens in the
translations resource which maps keyboard and mouse actions to select/paste actions.

This corresponds to the selectToClipboard resource. There is no corresponding
command-line option.

The keepSelection resource setting applies to CLIPBOARD selections just as it does for
PRIMARY selections. However some window managers treat the clipboard specially.
For instance, XQuartz’s synchronization between the OSX pasteboard and the X11
clipboard causes applications to lose the selection ownership for that atom when a
selection is copied to the clipboard.

See SELECT/PASTE for more information.

2025-10-19 76

XTERM(1)

Patch #403

X Window System XTERM(1)

Enable Visual Bell (resource visualbell)
Enable (or disable) visible bell (i.e., flashing) instead of an audible bell. This corresponds
to the —vb option and the visualBell resource.

Enable Bell Urgency (resource belllsUrgent)
Enable (or disable) Urgency window manager hint when Control-G is received. This
corresponds to the belllsUrgent resource.

Enable Pop on Bell (resource poponbell)
Enable (or disable) raising of the window when Control-G is received. This corresponds
to the —pop option and the popOnBell resource.

Enable Blinking Cursor (resource cursorblink)
Enable (or disable) the blinking-cursor feature. This corresponds to the —be option and
the cursorBlink resource. There are also escape sequences (see Xterm Control
Sequences):

* If the cursorBlinkXOR resource is set, the menu entry and the escape sequence states
will be XOR’d: if both are enabled, the cursor will not blink, if only one is enabled, the
cursor will blink.

» If the cursorBlinkXOR is not set; if either the menu entry or the escape sequence
states are set, the cursor will blink.

In either case, the checkbox for the menu shows the state of the cursorBlink resource,
which may not correspond to what the cursor is actually doing.

Enable Alternate Screen Switching (resource titeInhibit)
Enable (or disable) switching between the normal and alternate screens. This
corresponds to the titeInhibit resource. There is no corresponding command-line option.

Enable Active Icon (resource activeicon)
Enable (or disable) the active-icon feature. This corresponds to the —ai option and the
activelcon resource.

Sixel Scrolling (resource sixelScrolling)
This corresponds to the sixelScrolling resource. It can also be turned off and on using
the private mode DECSDM (Sixel Display Mode).

* When enabled, xterm draws sixel graphics at the current text cursor location, scrolling
the image vertically if it is larger than the screen, and leaving the text cursor at the
same column in the next complete line after the image when returning to text mode

This is the default, which corresponds to the reset state of DECSDM.

* When disabled, xterm draws sixel graphics starting at the upper left of the screen,
cropping to fit the screen, and does not alter the text cursor location.

This corresponds to the set state of DECSDM.
There is no corresponding command-line option.

Private Color Registers (resource privateColorRegisters)
If xterm is configured to support ReGIS graphics, this controls whether a private color
palette can be used.

When enabled, each graphic image uses a separate set of color registers, so that it
essentially has a private palette (this is the default). If it is not set, all graphics images
share a common set of registers which is how sixel and ReGIS graphics worked on actual
hardware. The default is likely a more useful mode on modern TrueColor hardware.

This corresponds to the privateColorRegisters resource. There is no corresponding
command-line option.

2025-10-19 77

XTERM(1) X Window System XTERM(1)

VTxxx Commands:

Do Soft Reset (resource softreset)
This corresponds to the VT220 DECSTR control sequence. A soft reset leaves the
contents of the window intact, but resets modes which affect subsequent updates:

Soft reset differs from full reset in a minor detail:

* Set the saved cursor position to the upper-left corner of the window.
 Exit from the status-line without erasing it.

Both soft/full resets do the following:

* Make the cursor visible, with shape reset according to the cursorUnderLine and
cursorBar resources.

* Enable or disable the cursor-blinking state according to the cursorBlink resource, and
set the Enable Blinking Cursor menu checkmark to match.

* Reset video attributes, e.g., bold, italic, underline, blink.
* Reset the ANSI color mode to the xterm default foreground and background.
* Reset the 256-color palette to its initial state.

* Reset the selected character set, e.g., ASCII, alternate character set. The UTF-8 modes
are not changed.

* Reset ECMA-48 KAM.

* Reset DECCKM and DECKPAM per resources appcursorDefault and
appkeypadDefault.

* Reset key-format and key-modifier modes to the values set by resources, i.e.,

formatCursorKeys, formatFunctionKeys, formatKeypadKeys,
formatModifierKeys, formatOtherKeys, and formatSpecialKeys.

as well as
modifyCursorKeys, modifyFunctionKeys, modifyKeyboard,
modifyKeypadKeys, = modifyModifierKeys, = modifyOtherKeys, and
modifySpecialKeys.

* Reset origin mode (DECOM).

* Reset all margins (i.e., top/bottom and left/right). This can be convenient when some
program has left the scroll regions set incorrectly.

* Set autowrap and reverse wrapping according to the resource values autoWrap and
reverseWrap.

* Reset checksum extension to the checksumExtension resource.

Do Full Reset (resource hardreset)
A full reset does this in addition to a soft reset:

¢ Clear the window.
* Reset tab stops to every eight columns.
* Reset the screen to match the reverseVideo resource.

* Resize the screen to 80 columns if 132-column mode was initially enabled with the
¢132 resource.

Patch #403 2025-10-19 78

XTERM(1) X Window System XTERM(1)

* Reset scrolling (jump versus smooth) per the jumpScroll resource.

* Enable linefeed mode (ECMA-48 LNM) and send/receive mode (ECMA-48 SRM).
* Reset DEC user-defined keys (DECUDK).

* Disable application mode for cursor- and keypad-keys (DECCKM, DECKPAM).

» Reset menu entry 8-bit Controls, per resource eightBitControl.

* Reset interpretation of the backarrow key, per initial resource settings.

» Set the keyboard type according to the resources keyboardType, hpFunctionKeys,
scoFunctionKeys, sunFunctionKeys, tcapFunctionKeys, oldXtermFKeys and
sunKeyboard.

* Turn mouse tracking off.

* Reset title and pointer modes per resources titleModes and pointerMode.

* Reset the readline and bracketed paste modes.

* Discard all SIXEL and ReGIS graphics data from memory.

» Reset sixelScrolling and privateColorRegisters from initial resource values.

» Set DECSDM if the sixelScrolling resource is true. Otherwise, reset DECSDM.

A full reset does this, unlike a soft reset:

* Move the cursor to the upper-left corner of the window, and then save that position.
» Hide the status-line, setting its display-type to “none”.

Reset and Clear Saved Lines (resource clearsavedlines)
Perform a full reset, and also clear the saved lines.

This corresponds to the VT102 RIS control sequence, with a few obvious differences.
For example, your session is not disconnected as a real VT102 would do.

Commands for setting the current screen:

Show Tek Window (resource tekshow)
When enabled, pops the Tektronix 4014 window up (makes it visible). When disabled,
hides the Tektronix 4014 window.

Switch to Tek Mode (resource tekmode)
When enabled, pops the Tektronix 4014 window up if it is not already visible, and
switches the input stream to that window. When disabled, hides the Tektronix 4014
window and switches input back to the VTxxx window.

Hide VT Window (resource vthide)
When enabled, hides the VTxxx window, shows the Tektronix 4014 window if it was not
already visible and switches the input stream to that window. When disabled, shows the
VTxxx window, and switches the input stream to that window.

Show Alternate Screen (resource altscreen)
When enabled, shows the alternate screen. When disabled, shows the normal screen.
Note that the normal screen may have saved lines; the alternate screen does not.

VT Fonts
The xterm fontMenu pops up when the “control” key and pointer button three are pressed in a window. It
sets the font used in the VTxxx window, or modifies the way the font is specified or displayed. There are
several sections.

The first section allows you to select the font from a set of alternatives:

Patch #403 2025-10-19 79

XTERM(1) X Window System XTERM(1)

Default (resource fontdefault)
Set the font to the default, i.e., that given by the *VT100.font resource.

Unreadable (resource fontl)
Set the font to that given by the *VT100.font1 resource.

Tiny (resource font2)
Set the font to that given by the *VT100.font2 resource.

Small (resource font3)
Set the font to that given by the *VT100.font3 resource.

Medium (resource font4)
Set the font to that given by the *VT100.font4 resource.

Large (resource font5)
Set the font to that given by the *VT100.font5 resource.

Huge (resource font6)
Set the font to that given by the *VT100.font6 resource.

Enormous (resource font7)
Set the font to that given by the *VT100.font7 resource.

Escape Sequence (resource fontescape)
This allows you to set the font last specified by the Set Font escape sequence (see Xterm
Control Sequences).

Selection (resource fontsel)
This allows you to set the font specified the current selection as a font name (if the
PRIMARY selection is owned).

The second section allows you to modify the way it is displayed:

Bold Fonts (resource allow—bold—fonts)
This is normally checked (enabled). When unchecked, xterm will not use bold fonts.
The menu selection modifies the allowBoldFonts resource.

Line-Drawing Characters (resource font-linedrawing)
When set, tells xterm to draw its own line-drawing characters. Otherwise it relies on the
font containing these. The menu selection modifies the forceBoxChars resource.

Packed Font (resource font—packed)
When set, tells xterm to use the minimum glyph-width from a font when displaying
characters. Use the maximum width (unchecked) to help display proportional fonts. The
menu selection modifies the forcePackedFont resource.

Doublesized Characters (resource font—doublesize)
When set, xterm may ask the font server to produce scaled versions of the normal font,
for VT102 double-size characters.

The third section allows you to modify the way it is specified:

TrueType Fonts (resource render—font)
If the renderFont and corresponding resources were set, this is a further control whether
xterm will actually use the Xft library calls to obtain a font.

UTF-8 Encoding (resource utf§—mode)
This controls whether xterm uses UTF-8 encoding of input/output. It is useful for
temporarily switching xterm to display text from an application which does not follow the
locale settings. It corresponds to the utf8 resource.

UTF-8 Fonts (resource utf8—fonts)
This controls whether xterm uses UTF-8 fonts for display. It is useful for temporarily
switching xterm to display text from an application which does not follow the locale

Patch #403 2025-10-19 80

XTERM(1) X Window System XTERM(1)

settings. It combines the utf8 and utf8Fonts resources, subject to the locale resource.

UTF-8 Titles (resource utf8—title)
This controls whether xterm accepts UTF-8 encoding for title control sequences. It
corresponds to the utf8Fonts resource.

Initially the checkmark is set according to both the utf8 and utf8Fonts resource values.
If the latter is set to “always”, the checkmark is disabled. Likewise, if there are no fonts
given in the utf8Fonts subresources, then the checkmark also is disabled.

The standard XTerm app-defaults file defines both sets of fonts, while the UXTerm app-
defaults file defines only one set. Assuming the standard app-defaults files, this
command will launch xterm able to switch between UTF-8 and ISO-8859-1 encoded
fonts:

uxterm —-class XTerm

The fourth section allows you to enable or disable special operations which can be controlled by writing
escape sequences to the terminal. These are disabled if the SendEvents feature is enabled:

Allow Color Ops (resource allow—color—ops)
This corresponds to the allowColorOps resource. Enable or disable control sequences
that set/query the colors.

Allow Font Ops (resource allow—font—ops)
This corresponds to the allowFontOps resource. Enable or disable control sequences
that set/query the font.

Allow Mouse Ops (resource allow—mouse—ops)
Enable or disable control sequences that cause the terminal to send escape sequences on
pointer-clicks and movement. This corresponds to the allowMouseOps resource.

Allow Tcap Ops (resource allow—tcap—ops)
Enable or disable control sequences that query the terminal’s notion of its function-key
strings, as termcap or terminfo capabilities. This corresponds to the allowTcapOps
resource.

Allow Title Ops (resource allow—title—ops)
Enable or disable control sequences that modify the window title or icon name. This
corresponds to the allowTitleOps resource.

Allow Window Ops (resource allow—window—ops)
Enable or disable extended window control sequences (as used in dtterm). This
corresponds to the allowWindowOps resource.

Tek Options
The xterm tekMenu sets various modes in the Tektronix emulation, and is popped up when the “control”
key and pointer button two are pressed in the Tektronix window. The current font size is checked in the
modes section of the menu.

Large Characters (resource tektextlarge)

#2 Size Characters (resource tektext2)

#3 Size Characters (resource tektext3)

Small Characters (resource tektextsmall)
Commands:

PAGE (resource tekpage)
Simulates the Tektronix “PAGE” button by

* clearing the window,

Patch #403 2025-10-19 81

XTERM(1) X Window System XTERM(1)

* cancelling the graphics input-mode, and
* moving the cursor to the home position.

RESET (resource tekreset)
Unlike the similarly-named Tektronix “RESET” button, this does everything that PAGE
does as well as resetting the line-type and font-size to their default values.

COPY (resource tekcopy)
Simulates the Tektronix “COPY” button (which makes a hard-copy of the screen) by
writing the information to a text file.

Windows:
Show VT Window (resource vtshow)
Switch to VT Mode (resource vtmode)
Hide Tek Window (resource tekhide)
SECURITY

X environments differ in their security consciousness.

* Most servers, run under xdm, are capable of using a “magic cookie” authorization scheme that can
provide a reasonable level of security for many people. If your server is only using a host-based
mechanism to control access to the server (see xhost(1)), then if you enable access for a host and other
users are also permitted to run clients on that same host, it is possible that someone can run an
application which uses the basic services of the X protocol to snoop on your activities, potentially
capturing a transcript of everything you type at the keyboard.

* Any process which has access to your X display can manipulate it in ways that you might not anticipate,
even redirecting your keyboard to itself and sending events to your application’s windows. This is true
even with the “magic cookie” authorization scheme. While the allowSendEvents provides some
protection against rogue applications tampering with your programs, guarding against a snooper is
harder.

* The X input extension for instance allows an application to bypass all of the other (limited) authorization
and security features, including the GrabKeyboard protocol.

* The possibility of an application spying on your keystrokes is of particular concern when you want to
type in a password or other sensitive data. The best solution to this problem is to use a better
authorization mechanism than is provided by X.

Subject to all of these caveats, a simple mechanism exists for protecting keyboard input in xterm.

The xterm menu (see MENUS above) contains a Secure Keyboard entry which, when enabled, attempts to
ensure that all keyboard input is directed only to xterm (using the GrabKeyboard protocol request). When
an application prompts you for a password (or other sensitive data), you can enable Secure Keyboard
using the menu, type in the data, and then disable Secure Keyboard using the menu again.

* This ensures that you know which window is accepting your keystrokes.

* It cannot ensure that there are no processes which have access to your X display that might be observing
the keystrokes as well.

Only one X client at a time can grab the keyboard, so when you attempt to enable Secure Keyboard it may
fail. In this case, the bell will sound. If the Secure Keyboard succeeds, the foreground and background
colors will be exchanged (as if you selected the Enable Reverse Video entry in the Modes menu); they
will be exchanged again when you exit secure mode. If the colors do not switch, then you should be very
suspicious that you are being spoofed. If the application you are running displays a prompt before asking
for the password, it is safest to enter secure mode before the prompt gets displayed, and to make sure that
the prompt gets displayed correctly (in the new colors), to minimize the probability of spoofing. You can
also bring up the menu again and make sure that a check mark appears next to the entry.

Secure Keyboard mode will be disabled automatically if your xterm window becomes iconified (or

Patch #403 2025-10-19 82

XTERM(1) X Window System XTERM(1)

otherwise unmapped), or if you start up a reparenting window manager (that places a title bar or other
decoration around the window) while in Secure Keyboard mode. (This is a feature of the X protocol not
easily overcome.) When this happens, the foreground and background colors will be switched back and the
bell will sound in warning.

CHARACTER CLASSES
Clicking the left pointer button twice in rapid succession (double-clicking) causes all characters of the same
class (e.g., letters, white space, punctuation) to be selected as a “word”. Since different people have
different preferences for what should be selected (for example, should filenames be selected as a whole or
only the separate subnames), the default mapping can be overridden through the use of the charClass (class
CharClass) resource.

This resource is a series of comma-separated range:value pairs.

» The range is either a single number or low-high in the range of 0 to 65535, corresponding to the code for
the character or characters to be set.

* The value is arbitrary. For example, the default table uses the character number of the first character
occurring in the set. When not in UTF-8 mode, only the first 256 entries of this table will be used.

The default table starts as follows —

static int charClass[256] = {
/* NUL SOH STX ETX EOT ENQ ACK BEL */
32, 1, 1, 1, 1, 1, 1, 1,
/* BS HT NL VT NP CR SO ST */
1, 32, 1, 1, 1, 1, 1, 1,
/* DLE DCl1 DC2 DC3 DC4 NAK SYN ETB */
1, 1, 1, 1, 1, 1, 1, 1,
/* CAN EM SUB ESC FS GS RS us */
1, 1, 1, 1, 1, 1, 1, 1,

/* SP ! " # $ % & v/
32, 33, 34, 35, 36, 37, 38, 39,
/* () * + , - . / */
40, 41, 42, 43, 44, 45, 46, 47,
/* 0 1 2 3 4 5 6 7 */
48, 48, 48, 48, 48, 48, 48, 48,
/* 8 9 : ; < = > ? x/
48, 48, 58, 59, 60, 61, 62, 63,
/* @ A B C D E F G */
64, 48, 48, 48, 48, 48, 48, 48,
/* H I J K L M N o */
48, 48, 48, 48, 48, 48, 48, 48,
/* P Q R S T U \% W */
48, 48, 48, 48, 48, 48, 48, 48,
/* X Y 7 [\] " _ */
48, 48, 48, 91, 92, 93, 94, 48,
/* A a b c d e f g */
96, 48, 48, 48, 48, 48, 48, 48,
/* h i 3 k 1 m n o */
48, 48, 48, 48, 48, 48, 48, 48,
/* P q r s t u v w */
48, 48, 48, 48, 48, 48, 48, 48,
/* X % z { | } ~ DEL */

48, 48, 48, 123, 124, 125, 126, 1,

/* x80 x81 x82 x83 IND NEL SSA ESA */
1, 1, 1, 1, 1, 1, 1, 1,

/* HTS HTJ VTS PLD PLU RI SS2 sS3 */

Patch #403 2025-10-19 83

XTERM(1) X Window System XTERM(1)

/* DCS PUl PU2 STS CCH MW SPA EPA */

/* x98 x99 x9A CSI ST O0SC PM APC */

/x = i </ L ox Y- | So */
160, 161, 162, 163, 164, 165, 166, 167,
/* .. c0 ip << _ RO - */
168, 169, 170, 171, 172, 173, 174, 175,
/* o +- 2 3 ! u g . x/
176, 177, 178, 179, 180, 181, 182, 183,
/* , 1 2 >> 1/4 1/2 3/4 ? %/
184, 185, 186, 187, 188, 189, 190, 191,
/* AY A' A~ A~ A: Ao AE c, */
48, 48, 48, 48, 48, 48, 48, 48,
/* EV E' E” E: I I I~ I: */
48, 48, 48, 48, 48, 48, 48, 48,
/* D- N~ o? o' o~ (o) O: X */
48, 48, 48, 48, 48, 48, 48, 215,
/* 0O/ u? U’ U~ U: y!' P B */
48, 48, 48, 48, 48, 48, 48, 48,
/* al a' a” a” a: ao ae c, */
48, 48, 48, 48, 48, 48, 48, 48,
/* el e' e’ e: il i in i: */
48, 48, 48, 48, 48, 48, 48, 48,
/* d n~ o? o' o” o~ o: - */
48, 48, 48, 48, 48, 48, 48, 247,
/* o/ ul u' u” u: y' P y: */

48, 48, 48, 48, 48, 48, 48, 48};

For example, the string “33:48,37:48,45-47:48,38:48” indicates that the exclamation mark,
percent sign, dash, period, slash, and ampersand characters should be treated the same way as
characters and numbers. This is useful for cutting and pasting electronic mailing addresses and
filenames.

KEY BINDINGS
It is possible to rebind keys (or sequences of keys) to arbitrary strings for input, by changing the
translations resources for the vt100 or tek4014 widgets. Changing the translations resource for events
other than key and button events is not expected, and will cause unpredictable behavior.

Actions
The following actions are provided for use within the v¢/00 or tek4014 translations resources:

allow-bold—fonts(on/off/toggle)
This action sets, unsets or toggles the allowBoldFonts resource and is also invoked by the
allow-bold—fonts entry in fontMenu.

allow—color—-ops(on/off/toggle)
This action sets, unsets or toggles the allowColorOps resource and is also invoked by the
allow—color—ops entry in fontMenu.

allow—font—ops(on/off/toggle)
This action sets, unsets or toggles the allowFontOps resource and is also invoked by the
allow—font—ops entry in fontMenu.

allow—mouse—ops(on/off/toggle)
This action sets, unsets or toggles the allowMouseOps resource and is also invoked by the
allow—mouse-ops entry in fontMenu.

Patch #403 2025-10-19 84

XTERM(1) X Window System XTERM(1)

allow-send—events(on/off/toggle)
This action sets, unsets or toggles the allowSendEvents resource and is also invoked by the
allowsends entry in mainMenu.

allow-tcap—ops(on/off/toggle)
This action sets, unsets or toggles the allowTcapOps resource and is also invoked by the
allow—tcap—ops entry in fontMenu.

allow-title—ops(on/off/toggle)
This action sets, unsets or toggles the allowTitleOps resource and is also invoked by the
allow—title—ops entry in fontMenu.

allow—window-ops(on/off/toggle)
This action sets, unsets or toggles the allowWindowOps resource and is also invoked by the
allow—window—ops entry in fontMenu.

alt—sends—escape()
This action toggles the state of the altSendsEscape resource.

bell([percent])
This action rings the keyboard bell at the specified percentage above or below the base volume.

clear—saved-lines()
This action does hard-reset() and also clears the history of lines saved off the top of the screen.
It is also invoked from the clearsavedlines entry in viMenu. The effect is identical to a hardware
reset (RIS) control sequence.

copy-selection(destname [, ...])
This action puts the currently selected text into all of the selections or cutbuffers specified by
destname. Unlike select—end, it does not send a mouse position or otherwise modify the internal
selection state.

create—menu(m/v/f/f)
This action creates one of the menus used by xterm, if it has not been previously created. The
parameter values are the menu names: mainMenu, vtMenu, fontMenu, tekMenu, respectively.

dabbrev-expand()

Expands the word before cursor by searching in the preceding text on the screen and in the
scrollback buffer for words starting with that abbreviation. Repeating dabbrev—expand() several
times in sequence searches for an alternative expansion by looking farther back. Lack of more
matches is signaled by a bell. Attempts to expand an empty word (i.e., when cursor is preceded
by a space) yield successively all previous words. Consecutive identical expansions are ignored.
The word here is defined as a sequence of non-whitespace characters. This feature partially
emulates the behavior of “dynamic abbreviation” expansion in Emacs (bound there to M—/).
Here is a resource setting for xterm which will do the same thing:

*VT100*translations: #override \n\
Meta <KeyPress> /:dabbrev—expand ()

deiconify()
Changes the window state back to normal, if it was iconified.

delete—is—del()
This action toggles the state of the deleteIsDEL resource.

dired—button()
Handles a button event (other than press and release) by echoing the event’s position (i.e.,
character line and column) in the following format:

"X ESC G <line+™ "> <col+“ ”>

Patch #403 2025-10-19 85

XTERM(1) X Window System XTERM(1)

dump-html()
Invokes the XHTML Screen Dump feature.

dump-svg()
Invokes the SVG Screen Dump feature.

exec—formatted(format, sourcename [, ...])
Execute an external command, using the current selection for part of the command’s parameters.
The first parameter, format gives the basic command. Succeeding parameters specify the
selection source as in insert—selection.

The format parameter allows these substitutions:
%% inserts a "%".

%P the screen-position at the beginning of the highlighted region, as a semicolon-separated
pair of integers using the values that the CUP control sequence would use.

%p the screen-position after the beginning of the highlighted region, using the same convention
as “%P”.

%S the length of the string that “%s” would insert.
%s the content of the selection, unmodified.
%T the length of the string that “%t” would insert.

%t the selection, trimmed of leading/trailing whitespace. Embedded spaces (and newlines) are
copied as is.

%R the length of the string that “%r” would insert.
%r the selection, trimmed of trailing whitespace.

%V the video attributes at the beginning of the highlighted region, as a semicolon-separated list
of integers using the values that the SGR control sequence would use.

%v the video attributes after the end of the highlighted region, using the same convention as
‘4%V’7-

After constructing the command-string, xterm forks a subprocess and executes the command,
which completes independently of xterm.

For example, this translation would invoke a new xterm process to view a file whose name is
selected while holding the shift key down. The new process is started when the mouse button is
released:

*VT100*translations: #override Shift \
<BtnlUp>:exec—formatted ("xterm -e view '%t'", SELECT)

exec—selectable(format, onClicks)
Execute an external command, using data copied from the screen for part of the command’s
parameters. The first parameter, format gives the basic command as in exec—formatted. The
second parameter specifies the method for copying the data as in the on2Clicks resource.

fullscreen(on/off/toggle)
This action sets, unsets or toggles the fullscreen resource.

hard-reset()
This action resets the scrolling region, tabs, window size, and cursor keys and clears the screen.
It is also invoked from the hardreset entry in vtMenu.

iconify()
Iconifies the window.

ignore() This action ignores the event but checks for special pointer position escape sequences.

Patch #403 2025-10-19 86

XTERM(1) X Window System XTERM(1)

insert() This action inserts the character or string associated with the key that was pressed.

insert—eight—bit()
This action inserts an eight-bit (Meta) version of the character or string associated with the key
that was pressed. Only single-byte values are treated specially. The exact action depends on the
value of the altSendsEscape and the metaSendsEscape and the eightBitInput resources. The
metaSendsEscape resource is tested first. See the eightBitInput resource for a full discussion.

The term “eight-bit” is misleading: xterm checks if the key is in the range 128 to 255 (the eighth
bit is set). If the value is in that range, depending on the resource values, xterm may then do one
of the following:

» add 128 to the value, setting its eighth bit,
» send an ESC byte before the key, or
* send the key unaltered.

insert—formatted(format, sourcename [, ...])
Insert the current selection or data related to it, formatted. The first parameter, format gives the
template for the data as in exec—formatted. Succeeding parameters specify the selection source
as in insert—selection.

insert—selectable(format, onClicks)
Insert data copied from the screen, formatted. The first parameter, format gives the template for
the data as in exec—formatted. The second parameter specifies the method for copying the data
as in the on2Clicks resource.

insert-selection(sourcename [, ...])
This action inserts the string found in the selection or cutbuffer indicated by sourcename.
Sources are checked in the order given (case is significant) until one is found. Commonly-used
selections include: PRIMARY, SECONDARY, and CLIPBOARD. Cut buffers are typically
named CUT_BUFFERO0 through CUT_BUFFER7.

insert—seven—bit()
This action is a synonym for insert(). The term “seven-bit” is misleading: it only implies that
xterm does not try to add 128 to the key’s value as in insert—eight—bit().

interpret(control-sequence)
Interpret the given control sequence locally, i.e., without passing it to the host. This works by
inserting the control sequence at the front of the input buffer. Use “\” to escape octal digits in the
string. Xt does not allow you to put a null character (i.e., “\000”) in the string.

keymap(name)
This action dynamically defines a new translation table whose resource name is name with the
suffix “Keymap” (i.e., nameKeymap, where case is significant). The name None restores the
original translation table.

larger—vt—font()
Set the font to the next larger one, based on the font dimensions. See also set—vt—font().

load—vt—fonts(name[,class])
Load fontnames from the given subresource name and class. That is, load the
“*VT100.name.font”, resource as “*VT100.font” etc. If no name is given, the original set of
fontnames is restored.

Unlike set—vt—font(), this does not affect the escape- and select-fonts, since those are not based
on resource values. It does affect the fonts loosely organized under the “Default” menu entry,
including font, boldFont, wideFont and wideBoldFont.

maximize()
Resizes the window to fill the screen.

Patch #403 2025-10-19 87

XTERM(1) X Window System XTERM(1)

meta—sends—escape()
This action toggles the state of the metaSendsEscape resource.

pointer—button()
Use this action as a fall-back to handle button press- and release-events for the mouse control
sequence protocol when the selection-related translations are suppressed with the
omitTranslation resource.

pointer—motion()
Use this action as a fall-back to handle motion-events for the mouse control sequence protocol
when the selection-related translations are suppressed with the omitTranslation resource.

popup—menu(menuname)
This action displays the specified popup menu. Valid names (case is significant) include:
mainMenu, vtMenu, fontMenu, and tekMenu.

print(printer—flags)
This action prints the window. It is also invoked by the print entry in mainMenu.

The action accepts optional parameters, which temporarily override resource settings. The
parameter values are matched ignoring case:

noFormFeed
no form feed will be sent at the end of the last line printed (i.e., printerFormFeed is
“false”).

FormFeed
a form feed will be sent at the end of the last line printed (i.e., printerFormFeed is “true”).

noNewLine
no newline will be sent at the end of the last line printed, and wrapped lines will be
combined into long lines (i.e., printerNewLine is “false”).

NewLine
a newline will be sent at the end of the last line printed, and each line will be limited (by
adding a newline) to the screen width (i.e., printerNewLine is “true”).

noAttrs
the page is printed without attributes (i.e., printAttributes is “0”).

monoAttrs
the page is printed with monochrome (vt220) attributes (i.e., printAttributes is “17).

colorAttrs
the page is printed with ANSI color attributes (i.e., printAttributes is “2”).

print—everything(printer—flags)
This action sends the entire text history, in addition to the text currently visible, to the program
given in the printerCommand resource. It allows the same optional parameters as the print
action. With a suitable printer command, the action can be used to load the text history in an
editor.

print-immediate()
Sends the text of the current window directly to a file, as specified by the printFileImmediate,
printModeImmediate and printOptsImmediate resources.

print—on—error()
Toggles a flag telling xterm that if it exits with an X error, to send the text of the current window
directly to a file, as specified by the printFileOnXError, printModeOnXError and
printOptsOnXError resources.

print—redir()
This action toggles the printerControlMode between 0 and 2. The corresponding popup menu
entry is useful for switching the printer off if you happen to change your mind after deciding to

Patch #403 2025-10-19 88

XTERM(1) X Window System XTERM(1)

print random binary files on the terminal.

quit()
This action sends a SIGHUP to the subprogram and exits. It is also invoked by the quit entry in
mainMenu.

readline—button()
Supports the optional readline feature by echoing repeated cursor forward or backward control
sequences on button release event, to request that the host application update its notion of the
cursor’s position to match the button event.

redraw()
This action redraws the window. It is also invoked by the redraw entry in mainMenu.

restore()
Restores the window to the size before it was last maximized.

scroll-back(count [,units [,mouse] 1)
This action scrolls the text window backward so that text that had previously scrolled off the top
of the screen is now visible.

The count argument indicates the number of units (which may be page, halfpage, pixel, or line)
by which to scroll. If no count parameter is given, xterm uses the number of lines given by the
scrollLines resource.

An adjustment can be specified for the page or halfpage units by appending a “+” or “-” sign
followed by a number, e.g., page—2 to specify 2 lines less than a page.

If the second parameter is omitted “lines” is used.
If the third parameter mouse is given, the action is ignored when mouse reporting is enabled.

scroll-forw(count [,units [,mouse] 1)
This action is similar to scroll-back except that it scrolls in the other direction.

scroll-lock(on/off7toggle)
This action sets, unsets or toggles internal state which tells xterm whether Scroll Lock is active,
subject to the allowScrollLock resource.

scroll-to(count)
Scroll to the given line relative to the beginning of the saved-lines. For instance, “scroll-to(0)”
would scroll to the beginning. Two special nonnumeric parameters are recognized:

scroll-to(begin)
Scroll to the beginning of the saved lines.

scroll-to(end)
Scroll to the end of the saved lines, i.e., to the currently active page.

secure() This action toggles the Secure Keyboard mode (see SECURITY), and is invoked from the
securekbd entry in mainMenu.

select—cursor—end(destname [, ...])
This action is similar to select—end except that it should be used with select—cursor—start.

select—cursor—extend()
This action is similar to select—extend except that it should be used with select—cursor—start.

select—cursor—start()
This action is similar to select—start except that it begins the selection at the current text cursor
position.

select—end(destname [, ...])
This action puts the currently selected text into all of the selections or cutbuffers specified by
destname. It also sends a mouse position and updates the internal selection state to reflect the end
of the selection process.

Patch #403 2025-10-19 89

XTERM(1) X Window System XTERM(1)

select—extend()
This action tracks the pointer and extends the selection. It should only be bound to Motion
events.

select—set()
This action stores text that corresponds to the current selection, without affecting the selection
mode.

select—start()
This action begins text selection at the current pointer location. See the section on POINTER
USAGE for information on making selections.

If xterm is configured to support block-selection, this action accepts a parameter “block” which
initiates a block-selection rather than the default character-oriented selection.

send—signal(signame)
This action sends the signal named by signame to the xterm subprocess (the shell or program
specified with the —e command line option). It is also invoked by the suspend, continue,
interrupt, hangup, terminate, and kill entries in mainMenu. Allowable signal names are (case
is not significant): tstp (if supported by the operating system), suspend (same as tstp), cont (if
supported by the operating system), int, hup, term, quit, alrm, alarm (same as alrm) and kill.

set—8—bit—control(on/off/toggle)
This action sets, unsets or toggles the eightBitControl resource. It is also invoked from the
8-bit—control entry in viMenu.

set—allow132(on/off7toggle)
This action sets, unsets or toggles the ¢132 resource. It is also invoked from the allow132 entry
in vtMenu.

set—altscreen(on/off/toggle)
This action sets, unsets or toggles between the alternate and current screens.

set—appcursor(on/off/toggle)
This action sets, unsets or toggles the handling Application Cursor Key mode and is also invoked
by the appcursor entry in viMenu.

set—appkeypad(on/off/toggle)
This action sets, unsets or toggles the handling of Application Keypad mode and is also invoked
by the appkeypad entry in vtiMenu.

set—autolinefeed(on/off/toggle)
This action sets, unsets or toggles automatic insertion of line feeds. It is also invoked by the
autolinefeed entry in viMenu.

set—autowrap(on/off/toggle)
This action sets, unsets or toggles automatic wrapping of long lines. It is also invoked by the
autowrap entry in vtMenu.

set—backarrow(on/off/toggle)
This action sets, unsets or toggles the backarrowKey resource. It is also invoked from the
backarrow key entry in vtMenu.

set—belllsUrgent(on/off/toggle)
This action sets, unsets or toggles the belllsUrgent resource. It is also invoked by the
belllsUrgent entry in vtiMenu.

set—cursesemul(on/off/toggle)
This action sets, unsets or toggles the curses resource. It is also invoked from the cursesemul
entry in vtMenu.

Patch #403 2025-10-19 90

XTERM(1) X Window System XTERM(1)

set—cursorblink(on/off/toggle)
This action sets, unsets or toggles the cursorBlink resource. It is also invoked from the
cursorblink entry in vtMenu.

set—font—doublesize(on/off/toggle)
This action sets, unsets or toggles the fontDoublesize resource. It is also invoked by the
font—doublesize entry in fontMenu.

set—font-linedrawing(on/off/toggle)
This action sets, unsets or toggles the xterm’s state regarding whether the current font has line-
drawing characters and whether it should draw them directly. It is also invoked by the
font-linedrawing entry in fontMenu.

set—font—packed(on/off/toggle)
This action sets, unsets or toggles the forcePackedFont resource which controls use of the font’s
minimum or maximum glyph width. It is also invoked by the font—packed entry in fontMenu.

set—hp—function-keys(on/off/toggle)
This action sets, unsets or toggles the hpFunctionKeys resource. It is also invoked by the
hpFunctionKeys entry in mainMenu.

set—jumpscroll(on/off/toggle)
This action sets, unsets or toggles the jumpscroll resource. It is also invoked by the jumpscroll
entry in vtMenu.

set—keep—clipboard(on/off/toggle)
This action sets, unsets or toggles the keepClipboard resource.

set—keep—selection(on/off/toggle)
This action sets, unsets or toggles the keepSelection resource. It is also invoked by the
keepSelection entry in viMenu.

set—logging(on/off/toggle)
This action sets, unsets or toggles the state of the logging option.

set—marginbell(on/off/toggle)
This action sets, unsets or toggles the marginBell resource.

set—num-lock(on/off/toggle)
This action toggles the state of the numLock resource.

set—old—function—keys(on/off/toggle)
This action sets, unsets or toggles the state of legacy function keys. It is also invoked by the
oldFunctionKeys entry in mainMenu.

set—pop—on-bell(on/off/toggle)
This action sets, unsets or toggles the popOnBell resource. It is also invoked by the poponbell
entry in vtMenu.

set—private—colors(on/off/toggle)
This action sets, unsets or toggles the privateColorRegisters resource.

set—render—font(on/off/toggle)
This action sets, unsets or toggles the renderFont resource. It is also invoked by the
render—font entry in fontMenu.

set—reverse—video(on/off/toggle)
This action sets, unsets or toggles the reverseVideo resource. It is also invoked by the
reversevideo entry in vtMenu.

set—reversewrap(on/off/toggle)
This action sets, unsets or toggles the reverseWrap resource. It is also invoked by the
reversewrap entry in vtMenu.

Patch #403 2025-10-19 91

XTERM(1) X Window System XTERM(1)

set—sco—function—keys(on/off/toggle)
This action sets, unsets or toggles the scoFunctionKeys resource. It is also invoked by the
scoFunctionKeys entry in mainMenu.

set—scroll-on—key(on/off/toggle)
This action sets, unsets or toggles the scrollKey resource. It is also invoked from the scrollkey
entry in vtMenu.

set—scroll-on—tty—output(on/off/toggle)
This action sets, unsets or toggles the scrollTtyOutput resource. It is also invoked from the
scrollttyoutput entry in viMenu.

set—scrollbar(on/off/toggle)
This action sets, unsets or toggles the scrollbar resource. It is also invoked by the scrollbar
entry in vtMenu.

set—select(on/off/toggle)
This action sets, unsets or toggles the selectToClipboard resource. It is also invoked by the
selectToClipboard entry in viMenu.

set—sixel-scrolling(on/off/toggle)
This action toggles between inline (sixel scrolling) and absolute positioning. It can also be
controlled via DEC private mode 80 (DECSDM) or from the sixelScrolling entry in the btMenu.

set—sun—function-keys(on/off/toggle)
This action sets, unsets or toggles the sunFunctionKeys resource. It is also invoked by the
sunFunctionKeys entry in mainMenu.

set—sun—keyboard(on/off/toggle)
This action sets, unsets or toggles the sunKeyboard resource. It is also invoked by the
sunKeyboard entry in mainMenu.

set—tek—text(large/2/3/small)
This action sets the font used in the Tektronix window to the value of the selected resource
according to the argument. The argument can be either a keyword or single-letter alias, as shown
in parentheses:
large (1)
Use resource fontLarge, same as menu entry tektextlarge.
two (2)
Use resource font2, same as menu entry tektext2.

three (3)
Use resource font3, same as menu entry tektext3.

small (s)
Use resource fontSmall, same as menu entry tektextsmall.
set—terminal—type(sype)
This action directs output to either the vt or fek windows, according to the fype string. It is also
invoked by the tekmode entry in vtMenu and the vtmode entry in tekMenu.
set—titeInhibit(on/off7toggle)
This action sets, unsets or toggles the titeInhibit resource, which controls switching between the
alternate and current screens.
set—toolbar(on/off/toggle)
This action sets, unsets or toggles the toolbar feature. It is also invoked by the toolbar entry in
mainMenu.
set—utf8—fonts(on/off/toggle)

This action sets, unsets or toggles the utf8Fonts resource. It is also invoked by the utf8—fonts
entry in fontMenu.

Patch #403 2025-10-19 92

XTERM(1) X Window System XTERM(1)

set—utf8—mode(on/off/toggle)
This action sets, unsets or toggles the utf8 resource. It is also invoked by the utf8—mode entry in
fontMenu.

set—utf8—title(on/off/toggle)
This action sets, unsets or toggles the utf8Title resource. It is also invoked by the utf8-title
entry in fontMenu.

set—visibility(vi/tek,on/off/toggle)
This action sets, unsets or toggles whether or not the vt or fek windows are visible. It is also
invoked from the tekshow and vthide entries in vtMenu and the vtshow and tekhide entries in
tekMenu.

set—visual-bell(on/off7toggle)
This action sets, unsets or toggles the visualBell resource. It is also invoked by the visualbell
entry in vtMenu.

set—vt—font(d/1/2/3/4/5/6/7/e/s [snormalfont [, boldfont]])
This action sets the font or fonts currently being used in the VTxxx window. The first argument is
a single character that specifies the font to be used:

d or D indicate the default font (the font initially used when xterm was started),
1 through 7 indicate the fonts specified by the font1 through font7 resources,

e or E indicate the normal and bold fonts that have been set through escape codes (or specified as
the second and third action arguments, respectively), and

s or S indicate the font selection (as made by programs such as xfontsel(1)) indicated by the
second action argument.

If xterm is configured to support wide characters, an additional two optional parameters are
recognized for the e argument: wide font and wide bold font.

smaller—vt—font()
Set the font to the next smaller one, based on the font dimensions. See also set—vt—font().

soft-reset()
This action resets the scrolling region. It is also invoked from the softreset entry in vtMenu. The
effect is identical to a soft reset (DECSTR) control sequence.

spawn—new—terminal(params)
Spawn a new xterm process. This is available on systems which have a modern version of the
process filesystem, e.g., “/proc”, which xterm can read.

Use the “cwd” process entry, e.g., /proc/12345/cwd to obtain the working directory of the process
which is running in the current xterm.

On systems which have the “exe” process entry, e.g., /proc/12345/exe, use this to obtain the
actual executable. Otherwise, use the $PATH variable to find xterm.

If parameters are given in the action, pass them to the new xterm process.

start—cursor—extend()
This action is similar to select—extend except that the selection is extended to the current text
cursor position.

start—extend()
This action is similar to select—start except that the selection is extended to the current pointer
location.

string(string)
This action inserts the specified text string as if it had been typed. Quotation is necessary if the
string contains whitespace or non-alphanumeric characters. If the string argument begins with

Patch #403 2025-10-19 93

XTERM(1) X Window System XTERM(1)

the characters “0x”, it is interpreted as a hex character constant.

tek—copy()
This action copies the escape codes used to generate the current window contents to a file in the
current directory beginning with the name COPY. It is also invoked from the tekcopy entry in
tekMenu.

tek—page()
This action clears the Tektronix window. It is also invoked by the tekpage entry in tekMenu.

tek—reset()
This action resets the Tektronix window. It is also invoked by the tekreset entry in tekMenu.

vi—button()
Handles a button event (other than press and release) by echoing a control sequence computed
from the event’s line number in the screen relative to the current line:

EsSC °p
or
ESC "N

according to whether the event is before, or after the current line, respectively. The "N (or “P) is
repeated once for each line that the event differs from the current line. The control sequence is
omitted altogether if the button event is on the current line.

visual-bell()
This action flashes the window quickly.

The Tektronix window also has the following action:

gin—press(l/L/m/M/r/R)
This action sends the indicated graphics input code.

Default Key Bindings
The default bindings in the VTxxx window use the SELECT token, which is set by the selectToClipboard
resource. These are for the v¢/00 widget:

Shift <KeyPress> Prior:scroll-back (1, halfpage) \n\
Shift <KeyPress> Next:scroll-forw (1,halfpage) \n\
Shift <KeyPress> Select :select—cursor—start () \
select—cursor—end (SELECT, CUT_BUFFERO) \n\
Shift <KeyPress> Insert :insert—selection (SELECT, CUT_BUFFERO0) \n\
Alt <Key>Return:fullscreen () \n\
<KeyRelease> Scroll_Lock:scroll-lock () \n\
Shift“"Ctrl <KeyPress> KP_Add:larger—vt—font () \n\
Shift Ctrl <KeyPress> KP_Add:smaller-vt—font () \n\
Shift <KeyPress> KP_Subtract :smaller-vt—font () \n\
“"Meta <KeyPress>:insert—seven—bit () \n\
Meta <KeyPress>:insert—eight-bit () \n\
!Ctrl <BtnlDown>:popup—menu (mainMenu) \n\
!Lock Ctrl <BtnlDown>:popup—menu(mainMenu) \n\
!Lock Ctrl @Num_Lock <BtnlDown>:popup—menu (mainMenu) \n\
! @Num_Lock Ctrl <BtnlDown>:popup—menu (mainMenu) \n\
Meta <BtnlDown>:select—start (block) \n\
“Meta <BtnlDown>:select—start() \n\
“"Meta <BtnlMotion>:select—extend () \n\

!Ctrl <Btn2Down>:popup—-menu (vtMenu) \n\

!Lock Ctrl <Btn2Down>:popup—menu (vtMenu) \n\

!Lock Ctrl @Num_Lock <Btn2Down>:popup-menu (vtMenu) \n\
! @Num_Lock Ctrl <Btn2Down>:popup—menu (vtMenu) \n\

Patch #403 2025-10-19 94

\n\

XTERM(1) X Window System XTERM(1)
“Ctrl "Meta <Btn2Down>:ignore() \n\
Meta <Btn2Down>:clear—saved-lines () \n\
“Ctrl "Meta <Btn2Up>:insert-selection (SELECT, CUT_BUFFERO0)
!Ctrl <Btn3Down>:popup—menu (fontMenu) \n\
!Lock Ctrl <Btn3Down>:popup—menu (fontMenu) \n\
!Lock Ctrl @Num_Lock <Btn3Down>:popup-menu (fontMenu) \n\
! @Num_Lock Ctrl <Btn3Down>:popup—menu (fontMenu) \n\
“Ctrl "Meta <Btn3Down>:start—extend () \n\
“Meta <Btn3Motion>:select—extend () \n\
Ctrl <Btn4Down>:scroll-back (1,halfpage,m) \n\
Lock Ctrl <Btn4Down>:scroll-back (1,halfpage,m) \n\
Lock @Num_Lock Ctrl <Btn4Down>:scroll-back (1, halfpage,m) \n\
@Num_Lock Ctrl <Btn4Down>:scroll-back (1,halfpage,m) \n\
<Btn4Down> :scroll-back (5, 1ine, m) \n\
Ctrl <Btn5Down>:scroll-forw (1, halfpage,m) \n\
Lock Ctrl <Btn5Down>:scroll-forw (1, halfpage,m) \n\
Lock @Num_Lock Ctrl <Btn5Down>:scroll-forw (1, halfpage,m) \n\
@Num_Lock Ctrl <Btn5Down>:scroll-forw (1,halfpage,m) \n\
<Btnb5Down> :scroll-forw (5, 1ine, m) \n\
<BtnUp>:select—-end (SELECT, CUT_BUFFERO0) \n\
<BtnMotion>:pointer—-motion () \n\
<BtnDown> : pointer—button () \n\
<BtnUp> : pointer—button () \n\
<BtnDown> :ignore ()

The default bindings in the Tektronix window are analogous but less extensive. These are for the tek4014

widget:

"Meta<KeyPress>:

Meta<KeyPress>:
<BtnlDown>:
<BtnlDown>:
<BtnlDown>:
<BtnlDown>:
<Btn2Down>:
<Btn2Down>:
<Btn2Down>:
<Btn2Down>:
“"Meta<BtnlDown>:
"Meta<BtnlDown>:
"Meta<Btn2Down>:
"Meta<Btn2Down>:
"Meta<Btn3Down>:
"Meta<Btn3Down>:

ICtrl

!'Lock Ctrl

!Lock Ctrl @Num_Lock
!Ctrl @Num_Lock
ICtrl

!'Lock Ctrl

!Lock Ctrl @Num_Lock
!Ctrl @Num_Lock
Shift

Shift

Shift

Custom Key Bindings

\n\
\n\

insert—seven-bit ()
insert—eight—bit ()

popup—menu (mainMenu) \n\
popup—menu (mainMenu) \n\
popup—menu (mainMenu) \n\
popup—menu (mainMenu) \n\
popup—menu (tekMenu) \n\
popup—menu (tekMenu) \n\
popup—menu (tekMenu) \n\
popup—menu (tekMenu) \n\
gin—press (L) \n\

gin—press (1) \n\

gin—press (M) \n\

gin—press (m) \n\

gin—press (R) \n\

(r)

gin—press (r

You can modify the translations resource by overriding parts of it, or merging your resources with it.

Here is an example which uses shifted select/paste to copy to the clipboard, and unshifted select/paste for
the primary selection. In each case, a (different) cut buffer is also a target or source of the select/paste
operation. It is important to remember however, that cut buffers store data in ISO-8859-1 encoding, while
selections can store data in a variety of formats and encodings. While xterm owns the selection, it
highlights it. When it loses the selection, it removes the corresponding highlight. But you can still paste

from the corresponding cut buffer.

*VT100*translations:

“Shift "Ctrl<Btn2Up>: insert-selection (PRIMARY, CUT_BUFFERO0)

Patch #403

#override \n\

\n\

2025-10-19

95

XTERM(1) X Window System XTERM(1)

Shift "Ctrl<Btn2Up>: insert—selection (CLIPBOARD, CUT_BUFFER1) \n\
“shift <BtnUp> : select-end (PRIMARY, CUT_BUFFERO0) \n\
Shift <BtnUp> : select-end (CLIPBOARD, CUT_BUFFER1)

In the example, the class name VT100 is used rather than the widget name. These are different; a class
name could apply to more than one widget. A leading “*” is used because the widget hierarchy above the
vt100 widget depends on whether the toolbar support is compiled into xterm.

Most of the predefined translations are related to the mouse, with a few that use some of the special keys on
the keyboard. Applications use special keys (function-keys, cursor-keys, keypad-keys) with modifiers
(shift, control, alt). If xterm defines a translation for a given combination of special key and modifier, that
makes it unavailable for use by applications within the terminal. For instance, one might extend the use of
Page Up and Page Down keys seen here:

Shift <KeyPress> Prior : scroll-back (1,halfpage) \n\
Shift <KeyPress> Next : scroll-forw(1,halfpage) \n\

to the Home and End keys:

Shift <KeyPress> Home : scroll-to (begin) \n\
Shift <KeyPress> End : scroll-to(end)

but then shift—Home and shift—End would then be unavailable to applications.

Not everyone finds the three-button mouse bindings easy to use. In a wheel mouse, the middle button
might be the wheel. As an alternative, you could add a binding using shifted keys:

*yT100*translations: #override \n\
Shift <Key>Home: copy-selection (SELECT) \n\
Shift <Key>Insert: copy-selection (SELECT) \n\
Ctrl Shift <Key>C: copy-selection (SELECT) \n\
Ctrl Shift <Key>V: insert-selection (SELECT)

You would still use the left- and right-mouse buttons (typically 1 and 3) for beginning and extending
selections.

Besides mouse problems, there are also keyboards with inconvenient layouts. Some lack a numeric keypad,
making it hard to use the shifted keypad plus and minus bindings for switching between font sizes. You can
work around that by assigning the actions to more readily accessed keys:

*VT100*translations: #override \n\
Ctrl <Key> +: larger—vt—font () \n\
Ctrl <Key> -: smaller—vt—font ()

The keymap feature allows you to switch between sets of translations. The sample below shows how the
keymap() action may be used to add special keys for entering commonly-typed words:

*VT100.Translations: #override <Key>F13: keymap (dbx)
*VT100.dbxKeymap.translations: \

<Key>F14: keymap (None) \n\
<Key>F17: string ("next") \n\
string (0x0d) \n\
<Key>F18: string ("step") \n\
string (0x0d) \n\
<Key>F19: string ("continue") \n\
string (0x0d) \n\
<Key>F20: string ("print ") \n\

insert—selection (PRIMARY, CUT_BUFFERO0)

Default Scrollbar Bindings
Key bindings are normally associated with the v¢/00 or tek4014 widgets which act as terminal emulators.
Xterm’s scrollbar (and toolbar if it is configured) are separate widgets. Because all of these use the

Patch #403 2025-10-19 96

XTERM(1) X Window System XTERM(1)

X Toolkit, they have corresponding translations resources. Those resources are distinct, and match
different patterns, e.g., the differences in widget-name and number of levels of widgets which they may
contain.

The scrollbar widget is a child of the v#/00 widget. It is positioned on top of the v¢/00 widget. Toggling
the scrollbar on and off causes the v¢100 widget to resize.

The default bindings for the scrollbar widget use only mouse-button events:

<Btn5Down>: StartScroll (Forward) \n\

<BtnlDown>: StartScroll (Forward) \n\

<Btn2Down>: StartScroll (Continuous) MoveThumb () NotifyThumb () \n\
<Btn3Down>: StartScroll (Backward) \n\

<Btn4Down>: StartScroll (Backward) \n\

<Btn2Motion>: MoveThumb () NotifyThumb () \n\

<BtnUp>: NotifyScroll (Proportional) EndScroll ()

Events which the scrollbar widget does not recognize at all are lost.

However, at startup, xterm augments these translations with the default translations used for the vt00
widget, together with the resource ‘“actions” which those translations use. Because the scrollbar (or
menubar) widgets do not recognize these actions (but because it has a corresponding translation), they are
passed on to the vt100 widget.

This augmenting of the scrollbar’s translations has a few limitations:

* Xterm knows what the default translations are, but there is no suitable library interface for determining
what customizations a user may have added to the v#/00 widget. All that xterm can do is augment the
scrollbar widget to give it the same starting point for further customization by the user.

* Events in the gap between the widgets may be lost.

» Compose sequences begun in one widget cannot be completed in the other, because the input methods
for each widget do not share context information.

Most customizations of the scrollbar translations do not concern key bindings. Rather, users are generally
more interested in changing the bindings of the mouse buttons. For example, some people prefer using the
left pointer button for dragging the scrollbar thumb. That can be set up by altering the translations
resource, e.g.,

*VT100.scrollbar.translations: #override \n\
<Btn5Down>: StartScroll (Forward) \n\
<BtnlDown>: StartScroll (Continuous) MoveThumb () NotifyThumb () \n\
<Btn4Down>: StartScroll (Backward) \n\
<BtnlMotion>: MoveThumb () NotifyThumb () \n\
<BtnUp>: NotifyScroll (Proportional) EndScroll ()

CONTROL SEQUENCES AND KEYBOARD
Applications can send sequences of characters to the terminal to change its behavior. Often they are
referred to as “ANSI escape sequences” or just plain “escape sequences” but both terms are misleading:

* ANSI x3.64 (obsolete) which was replaced by ISO 6429 (ECMA-48) gave rules for the format of these
sequences of characters.

* While the original VT100 was claimed to be ANSI-compatible (against x3.64), there is no freely
available version of the ANSI standard to show where the VT100 differs. Most of the documents which
mention the ANSI standard have additions not found in the original (such as those based on ansi.sys).
So this discussion focuses on the ISO standards.

* The standard describes only sequences sent from the host to the terminal. There is no standard for
sequences sent by special keys from the terminal to the host. By convention (and referring to existing
terminals), the format of those sequences usually conforms to the host-to-terminal standard.

Patch #403 2025-10-19 97

XTERM(1) X Window System XTERM(1)

* Some of xterm’s sequences do not fit into the standard scheme. Technically those are “unspecified”. As
an example, DEC Screen Alignment Test (DECALN) is this three-character sequence:

ESC # 8

* Some sequences fit into the standard format, but are not listed in the standard. These include the
sequences used for setting up scrolling margins and doing forward/reverse scrolling.

* Some of the sequences (in particular, the single-character functions such as tab and backspace) do not
include the escape character.

With all of that in mind, the standard refers to these sequences of characters as “control sequences”.

Xterm Control Sequences lists the control sequences which an application can send xterm to make it
perform various operations. Most of these operations are standardized, from either the DEC or Tektronix
terminals, or from more widely used standards such as ISO-6429.

A few examples of usage are given in this section.

Window and Icon Titles
Some scripts use echo with options —e and —n to tell the shell to interpret the string “\e” as the escape
character and to suppress a trailing newline on output. Those are not portable, nor recommended. Instead,
use printf(1) (POSIX).

For example, to set the window title to “Hello world!”, you could use one of these commands in a script:

printf '\033
printf '\033
printf '\033
printf '\033

2;Hello world!\033\\"
2;Hello world!\007'
2;%s\033\\' "Hello world!"
2;%s\007"' "Hello world!"

— e e

The printf(1) command interprets the octal value “\033” for escape, and (since it was not given in the
format) omits a trailing newline from the output.

Some programs (such as screen(1l)) set both window- and icon-titles at the same time, using a slightly
different control sequence:

printf '\033
printf '\033
printf '\033
printf '\033

0;Hello world!\033\\'
0;Hello world!\007"'
0;%s\033\\' "Hello world!"
0;%s\007'" "Hello world!"

— e e

The difference is the parameter “0” in each command. Most window managers will honor either window
title or icon title. Some will make a distinction and allow you to set just the icon title. You can tell xterm to
ask for this with a different parameter in the control sequence:

printf '\033
printf '\033
printf '\033
printf '\033

1;Hello world!\033\\"
1;Hello world!\007"'
1;%s\033\\' "Hello world!"
1;%s\007'" "Hello world!"

— e e

Special Keys
Xterm, like any VT100-compatible terminal emulator, has two modes for the special keys (cursor-keys,
numeric keypad, and certain function-keys):

* normal mode, which makes the special keys transmit “useful” sequences such as the control sequence for
cursor-up when pressing the up-arrow, and

* application mode, which uses a different control sequence that cannot be mistaken for the ‘“useful”
sequences.

The main difference between the two modes is that normal mode sequences start with CSI (escape [) and
application mode sequences start with SS3 (escape O).

The terminal is initialized into one of these two modes (usually the normal mode), based on the terminal

Patch #403 2025-10-19 98

XTERM(1) X Window System XTERM(1)

description (termcap or terminfo). The terminal description also has capabilities (strings) defined for the
keypad mode used in curses applications.

There is a problem in using the terminal description for applications that are not intended to be full-screen
curses applications: the definitions of special keys are only correct for this keypad mode. For example,
some shells (unlike ksh(1), which appears to be hard-coded, not even using termcap) allow their users to
customize key-bindings, assigning shell actions to special keys.

* bash(1l) allows constant strings to be assigned to functions. This is only successful if the terminal is
initialized to application mode by default, because bash lacks flexibility in this area. It uses a (less
expressive than bash’s) readline scripting language for setting up key bindings, which relies upon the
user to statically enumerate the possible bindings for given values of $TERM.

» zsh(l) provides an analogous feature, but it accepts runtime expressions, as well as providing a
$terminfo array for scripts. In particular, one can use the terminal database, transforming when defining
a key-binding. By transforming the output so that CSI and SS3 are equated, zsh can use the terminal
database to obtain useful definitions for its command-line use regardless of whether the terminal uses
normal or application mode initially. Here is an example:

[["$terminfo[kcuul]l" == ""[0"*]] && \

bindkey -M viins "${terminfolkcuull/O/[}" \

vi-up-line-or-history

Changing Colors

A few shell programs provide the ability for users to add color and other video attributes to the shell prompt
strings. Users can do this by setting $PS1 (the primary prompt string). Again, bash and zsh have provided
features not found in ksh. There is a problem, however: the prompt’s width on the screen will not
necessarily be the same as the number of characters. Because there is no guidance in the POSIX standard,
each shell addresses the problem in a different way:

* bash treats characters within “\[” and “\]” as nonprinting (using no width on the screen).
* zsh treats characters within “%{” and “%}” as nonprinting.

In addition to the difference in syntax, the shells provide different methods for obtaining useful escape
sequences:

* As noted in Special Keys, zsh initializes the $terminfo array with the terminal capabilities.

It also provides a function echoti which works like tput(1) to convert a terminal capability with its
parameters into a string that can be written to the terminal.

* Shells lacking a comparable feature (such as bash) can always use the program tput(l) to do this
transformation.

Hard-coded escape sequences are supported by each shell, but are not recommended because those rely
upon particular configurations and cannot be easily moved between different user environments.

ENVIRONMENT
Xterm sets several environment variables. It also removes certain environment variables which are known
to interfere with other applications. For instance, it removes COLUMNS, LINES, and TERMCAP in
configurations where those are unnecessary.

System Independent
Some variables are used on every system:

DISPLAY
is the display name, pointing to the X server (see DISPLAY NAMES in X(7)).

TERM
is set according to the terminfo (or termcap) entry which it is using as a reference.

On some systems, you may encounter situations where the shell which you use and xterm are built
using libraries with different terminal databases. In that situation, xterm may choose a terminal
description not known to the shell.

Patch #403 2025-10-19 99

XTERM(1) X Window System XTERM(1)

WINDOWID
is set to the X window id number of the xterm window.

XTERM_FILTER
is set if a locale-filter is used. The value is the pathname of the filter.

XTERM_LOCALE
shows the locale which was used by xterm on startup. Some shell initialization scripts may set a
different locale.

XTERM_SHELL
is set to the pathname of the program which is invoked. Usually that is a shell program, e.g., /bin/sh.
Since it is not necessarily a shell program however, it is distinct from “SHELL”.

XTERM_VERSION
is set to the string displayed by the —version option. That is normally an identifier for the X Window
libraries used to build xterm, followed by xterm’s patch number in parenthesis. The patch number is
also part of the response to a Secondary Device Attributes (DA) control sequence (see Xterm Control
Sequences).

System Dependent
Depending on your system configuration, xterm may also set the following:

COLUMNS
the width of the xterm in characters (cf: “stty columns”).

When this variable is set, curses applications (and most terminal programs) will assume that the
terminal has this many columns.

Xterm would do this for systems which have no ability to tell the size of the terminal. Those are very
rare, none newer than the mid 1990s when SVR4 became prevalent.

HOME
when xterm is configured (at build-time) to update utmp.

LINES
the height of the xterm in characters (cf: “stty rows”).

When this variable is set, curses applications (and most terminal programs) will assume that the
terminal has this many lines (rows).

Xterm would do this for systems which have no ability to tell the size of the terminal. Those are very
rare, none newer than the mid 1990s when SVR4 became prevalent.

LOGNAME
when xterm is configured (at build-time) to update utmp.

Your configuration may have set LOGNAME; xterm does not modify that. If it is unset, xterm will
use USER if it is set. Finally, if neither is set, xterm will use the getlogin(3) function.

SHELL
when xterm is configured (at build-time) to update utmp. It is also set if you provide a valid shell
name as the optional parameter.

Xterm sets this to an absolute pathname. If you have set the variable to a relative pathname, xterm
may set it to a different shell pathname.

If you have set this to an pathname which does not correspond to a valid shell, xferm may unset it, to
avoid confusion.

TERMCAP
the contents of the termcap entry corresponding to $TERM, with lines and columns values
substituted for the actual size window you have created.

This feature is, like LINES and COLUMNS, used rarely. It addresses the same limitation of a few
older systems by providing a way for termcap-based applications to get the initial screen size.

Patch #403 2025-10-19 100

XTERM(1) X Window System XTERM(1)

TERMINFO
may be defined to a nonstandard location using the configure script.

XCURSOR_THEME
See cursorTheme resource.

WINDOW PROPERTIES

In the output from xprop(1), there are several properties.

Properties set by X Toolkit

WM_CLASS
This shows the instance name and the X resource class, passed to X Toolkit during initialization of
Xterm, e.g.,
WM_CLASS (STRING) = "xterm", "UXTerm"

WM_CLIENT_LEADER
This shows the window-id which xterm provides with an environment variable (WINDOWID), e.g.,

WM_CLIENT_LEADER (WINDOW) : window id # 0x800023

WM_COMMAND
This shows the command-line arguments for xterm which are passed to X Toolkit during
initialization, e.g.,

WM_COMMAND (STRING) = { "xterm", "-class", "UXTerm", "-title", "uxterm",

WM_ICON_NAME
This holds the icon title, which different window managers handle in various ways. It is set via the
iconName resource. Applications can change this using control sequences.

WM_LOCALE_NAME
This shows the result from the setlocale(3) function for the LC_CTYPE category, e.g.,

WM_LOCALE_NAME (STRING) = "en_US.UTF-8"

WM_NAME
This holds the window title, normally at the top of xterm’s window. It is set via the title resource.
Applications can change this using control sequences.

Properties set by Xterm
X Toolkit does not manage EWMH properties. Xterm does this directly.

_NET_WM_ICON_NAME
stores the icon name.

_NET_WM_NAME
stores the title string.

_NET_WM_PID
stores the process identifier for xterm’s display.

Properties used by Xterm
_NET_SUPPORTED
Xterm checks this property on the supporting window to decide if the window manager supports
specific maximizing styles. That may include other window manager hints; xterm uses the X library
calls to manage those.

_NET_SUPPORTING_WM_CHECK
Xterm checks this to ensure that it will only update the EWMH properties for a window manager
which claims EWMH compliance.

_NET_WM_STATE
This tells xterm whether its window has been maximized by the window manager, and if so, what
type of maximizing:

Patch #403 2025-10-19 101

"_u8'

XTERM(1) X Window System XTERM(1)

_NET_WM_STATE_FULLSCREEN

_NET_WM_STATE_MAXIMIZED_HORZ

_NET_WM_STATE_MAXIMIZED_VERT
FILES

The actual pathnames given may differ on your system.

/etc/shells
contains a list of valid shell programs, used by xterm to decide if the “SHELL” environment variable
should be set for the process started by xterm.

On systems which have the getusershell function, xterm will use that function rather than directly
reading the file, since the file may not be present if the system uses default settings.

/var/run/utmp
the system log file, which records user logins.

Nvar/log/wtmp
the system log file, which records user logins and logouts.

/etc/X11/app-defaults/XTerm
the xterm default application resources.

/etc/X11/app-defaults/XTerm—color
the xterm color application resources. If your display supports color, use this

*customization: -color

in your .Xdefaults file to automatically use this resource file rather than /etc/X11/app-defaults/XTerm.
If you do not do this, xterm uses its compiled-in default resource settings for colors.

/usr/share/pixmaps
the directory in which xterm’s pixmap icon files are installed.

ERROR MESSAGES

Most of the fatal error messages from xterm use the following format:
xterm: Error XXX, errno YYY: ZZZ
The XXX codes (which are used by xterm as its exit-code) are listed below, with a brief explanation.

1 ERROR_MISC
miscellaneous errors, usually accompanied by a specific message,

11 ERROR_FIONBIO
main: ioctl() failed on FIONBIO

12 ERROR_F_GETFL
main: ioctl() failed on F_GETFL

13 ERROR_F_SETFL
main: ioctl() failed on F_SETFL

14 ERROR_OPDEVTTY
spawn: open() failed on /dev/tty

15 ERROR_TIOCGETP
spawn: ioctl() failed on TIOCGETP

17 ERROR_PTSNAME
spawn: ptsname() failed

18 ERROR_OPPTSNAME
spawn: open() failed on ptsname

Patch #403 2025-10-19 102

XTERM(1)

19

20

21

22

23

24

25

26

27

28

29

30

32

34

35

36

46

47

49

50

54

57

Patch #403

X Window System

ERROR_PTEM
spawn: ioctl() failed on I_ PUSH/"ptem"

ERROR_CONSEM
spawn: ioctl() failed on I_PUSH/"consem"

ERROR_LDTERM
spawn: ioctl() failed on I_PUSH/"Idterm"

ERROR_TTCOMPAT
spawn: ioctl() failed on I_PUSH/"ttcompat"

ERROR_TIOCSETP
spawn: ioctl() failed on TIOCSETP

ERROR_TIOCSETC
spawn: ioctl() failed on TIOCSETC

ERROR_TIOCSETD
spawn: ioctl() failed on TIOCSETD

ERROR_TIOCSLTC
spawn: ioctl() failed on TIOCSLTC

ERROR_TIOCLSET
spawn: ioctl() failed on TIOCLSET

ERROR_INIGROUPS
spawn: initgroups() failed
ERROR_FORK

spawn: fork() failed

ERROR_EXEC
spawn: exec() failed

ERROR_PTYS

get_pty: not enough ptys
ERROR_PTY_EXEC

waiting for initial map
ERROR_SETUID

spawn: setuid() failed
ERROR_INIT

spawn: can’t initialize window
ERROR_TIOCKSET

spawn: ioctl() failed on TIOCKSET

ERROR_TIOCKSETC
spawn: ioctl() failed on TIOCKSETC

ERROR_LUMALLOC
luit: command-line malloc failed

ERROR_SELECT
in_put: select() failed

ERROR_VINIT
VTInit: can’t initialize window

ERROR_KMMALLOCI1
HandleKeymapChange: malloc failed

2025-10-19

XTERM(1)

103

XTERM(1) X Window System XTERM(1)

BUGS

60 ERROR_TSELECT
Tinput: select() failed

64 ERROR_TINIT
TekInit: can’t initialize window

71 ERROR_BMALLOC2
SaltTextAway: malloc() failed

80 ERROR_LOGEXEC
StartLog: exec() failed

83 ERROR_XERROR
xerror: XError event

84 ERROR_XIOERROR
xioerror: X I/O error

85 ERROR_ICEERROR
ICE I/O error

90 ERROR_SCALLOC
Alloc: calloc() failed on base

91 ERROR_SCALLOC2
Alloc: calloc() failed on rows

102 ERROR_SAVE_PTR
ScrnPointers: malloc/realloc() failed

Large pastes do not work on some systems. This is not a bug in xterm; it is a bug in the pseudo terminal
driver of those systems. Xrerm feeds large pastes to the pty only as fast as the pty will accept data, but
some pty drivers do not return enough information to know if the write has succeeded.

When connected to an input method, it is possible for xterm to hang if the XIM server is suspended or
killed.

Many of the options are not resettable after xterm starts.

This program still needs to be rewritten. It should be split into very modular sections, with the various
emulators being completely separate widgets that do not know about each other. Ideally, you’d like to be
able to pick and choose emulator widgets and stick them into a single control widget.

There needs to be a dialog box to allow entry of the Tek COPY file name.

AUTHORS

Far too many people.

These contributed to the X Consortium: Loretta Guarino Reid (DEC-UEG-WSL), Joel McCormack (DEC-
UEG-WSL), Terry Weissman (DEC-UEG-WSL), Edward Moy (Berkeley), Ralph R. Swick (MIT-Athena),
Mark Vandevoorde (MIT-Athena), Bob McNamara (DEC-MAD), Jim Gettys (MIT-Athena), Bob Scheifler
(MIT X Consortium), Doug Mink (SAO), Steve Pitschke (Stellar), Ron Newman (MIT-Athena), Jim Fulton
(MIT X Consortium), Dave Serisky (HP), Jonathan Kamens (MIT-Athena).

Beginning with XFree86, there were far more identifiable contributors. The THANKS file in xterm’s source
lists 243 in June 2022. Keep in mind these: Jason Bacon, Jens Schweikhardt, Ross Combs, Stephen P.
Wall, David Wexelblat, and Thomas Dickey (invisible—island.net).

SEE ALSO

resize(1), luit(1), uxterm(1), X(7), Xcursor(7), pty(4), tty(4)

Xterm Control Sequences (this is the file ctlseqs.ms).

https://invisible—island.net/xterm/xterm.html
https://invisible—island.net/xterm/manpage/xterm.html

Patch #403 2025-10-19 104

XTERM(1) X Window System XTERM(1)

https://invisible—island.net/xterm/ctlseqs/ctlseqs.html
https://invisible—island.net/xterm/xterm.faq.html
https://invisible—island.net/xterm/xterm.log.html

X Toolkit Intrinsics — C Language Interface (Xt),
Joel McCormack, Paul Asente, Ralph R. Swick (1994),
Thomas E. Dickey (2019).

Inter-Client Communication Conventions Manual ICCCM),
David Rosenthal and Stuart W. Marks (version 2.0, 1994).

Extended Window Manager Hints (EWMH),
X Desktop Group (version 1.3, 2005).

EWMH uses UTF8_STRING pervasively without defining it, but does mention the ICCCM. Version 2.0 of
the ICCCM does not address UTF-8. That is an extension added in XFree86.

* Markus Kuhn summarized this in UTF-8 and Unicode FAQ for Unix/Linux (2001), in the section “Is X11
ready for Unicode?”

https://www.cl.cam.ac.uk/"mgk25/unicode.html

* Juliusz Chroboczek proposed the UTF8_STRING selection atom in 1999/2000, which became part of
the ICCCM in XFree86.

https://www.irif.fr/"jch/software/UTF8_STRING/

An Xorg developer removed that part of the documentation in 2004 when incorporating other work from
XFree86 into Xorg. The feature is still supported in Xorg, though undocumented as of 2019.

Patch #403 2025-10-19 105

