RCSPUT(1) User commands RCSPUT(1)

NAME

resput — RCS check-in utility

SYNOPSIS

resput [options] [file-specifications]

DESCRIPTION

Resput is a simple, easy to use interface to res (revision control system). For each file specified as input, it
checks differences against the previously archived version and prompts you for change history comments.

Resput uses the res utility ci to maintain versions of a given source file in a dependent directory named
IIRCS”:

* It checks to ensure that each file is indeed a text file (so that you do not accidentally archive ".0" files, for
example).

» If you give resput a directory name, it will recur, checking-in files in the directory.

* For each file which has a corresponding ",v" file, resput compares the two (using diff) and pipes the re-
sult through the pager.

* An option is provided so that you may direct resput to perform the differencing without checking the file
into rcs.

» The ",v" file is post-processed by resput so that the check-in date matches the file’s modification date.

The last point is the fundamental advantage offered by resput. The ordinary rcs methodology uses the cur-
rent date as the check-in date. This works well only for large projects in which a central project administra-
tor is responsible for controlling the versions of source files. It does not work well for small projects, for
which res’s primary advantage is its compact storage of multiple versions of a file.

By using the file’s modification date as a reference, you can more easily back up to a meaningful version —
by date, rather than version number.

Resput integrates all of the functions used in the rcs check-in process into one utility program.

OPTIONS

Some of the options which you may specify to resput are passed through to the underlying ci utility. Oth-
ers represent extensions:

—b is passed to diff, and directs it to ignore trailing blanks on a line, and to treat repeated blanks as a sin-
gle blank.

—c directs resput to use cat rather than the PAGER (usually more) to display differences. This is most
useful in an Apollo pad, since the more program would otherwise switch to VT100 emulator mode.

—d instructs resput to test for differences, but not to check the files into rcs.
—h is passed to diff, and permits it to handle huge differences.
-Lfile
causes resput to generate a log-file of the files which are processed, and all differences which are en-

countered. The log-file is inherited in recursion to lower directory levels (i.e., it is written to the
same place). If no argument is specified, rcsput assumes "logfile".

=Tpath
specifies an alternate tool to invoke, overrides the default "checkin".

OPERATIONS

The resput utility is designed for use in small development projects. The methodology for this tool fol-
lows:

* Develop source files "normally". Each file should contain rcs keywords (see ci (1)) so that you will be
able to distinguish checked-out files. The rcs keywords should appear at the top of your source file, for
consistency. In C language programs, the convention is to make a string which will permit the ident util-

2025-09-28 1

RCSPUT(1) User commands RCSPUT(1)

ity to show the versions of the modules which make up a program:

#ifndef lint
static char ident[] = "$Id: rcsput.man,v 10.1 92/02/06 10:01:45 dickey Exp $";
#endif

* Periodically archive (with resput) those versions of files which you wish to keep (you should never have
programs which have new features which you wish to keep, while there are defects in other parts of the
program. That would be an unsound approach to development!).

* When you reach the point of releasing the program, ensure that all source files have been checked-in.
The directory editor (ded) is useful for reviewing the check-in dates.

* Copy the directory containing your program to the release directory. Purge all files, except those which
are stored in the rcs subdirectories. Use resget to extract the files. The unadorned co utility will work,
of course, but it retains the file modification dates. You may also use checkout to retain file dates.

* Ensure that all files have been checked-in and released. You may use diff to compare the directories —
the only differences should be the substituted rcs keywords.

* Build the released version of your program. All files should be present. No embedded path names
should refer to your development copy. To ensure good isolation, you may change the permissions on
your development directory temporarily.

When checking files into rcs, it is a good idea to make a test run (using the "—d" option) so that you can in-
spect the differences. For example, you may have forgotten to remove (or bypass) debugging stubs. Or,
you may have been editing a checked-out file (with the rcs keywords substituted). Resput would archive
this anyway.

ENVIRONMENT

Resput is written in C, and runs on POSIX systems.
Environment variables imported by resput include:

PAGER
identifies the program to use in displaying differences between the file which is being checked in,
and the previously archived version. There may be a lot of differences — more than can be shown
on one screen.

FILES
Resput uses the following files

checkin
A utility which invokes ci, and modifies the rcs ",v" file after check-in so that the check-in date
matches the file’s modification date.

ANTICIPATED CHANGES

None.

AUTHORS
Thomas E. Dickey <dickey @invisible-island.net>

SEE ALSO
checkin, rcsget, checkout, ded, ci (1), co (1), diff (1), ident (1)

2025-09-28 2

