
CPROT O(1) User commands CPROT O(1)

NAME
cproto − generate C function prototypes and convert function definitions

SYNOPSIS
cproto [option ...] [file ...]

DESCRIPTION
Extracting

Cproto generates function prototypes for functions defined in the specified C source files to the standard

output. The function definitions may be in the old style or ANSI C style. Optionally, cproto also outputs

declarations for variables defined in the files. If no file argument is given, cproto reads its input from the

standard input.

Converting ANSI C

Cproto can convert function definitions in simple source files from the old style to the ANSI C style (see

BUGS for limitations). The original source files along with files specified by

#include "file"

directives appearing in the source code will be overwritten with the converted code. If no file names are

given on the command line, then the program reads the source code from the standard input and outputs the

converted source to the standard output.

If any comments appear in the parameter declarations for a function definition, such as in the example,

main (argc, argv)

int argc; /* number of arguments */

char *argv[]; /* arguments */

{

}

then the converted function definition will have the form

int

main (

int argc, /* number of arguments */

char *argv[] /* arguments */

)

{

}

Otherwise, the converted function definition will look like

int

main (int argc, char *argv[])

{

}

Converting K&R C

Cproto can convert function definitions from the ANSI style to the old K&R style. In this mode, the pro-

gram also converts function declarators and prototypes that appear outside function bodies. This is not a

complete ANSI C to old C conversion. The program does not change anything within function bodies.

Lint−libraries

Cproto can optionally generate source in lint−library format. This is useful in environments where the lint

utility is used to supplement prototype checking of your program.

OPTIONS
−a Convert function definitions from the old style to the ANSI C style.

−B directive

Set the conditional compilation directive to output at the beginning of function definitions gener-

ated by the −b option. The default is

Version 4.7y 2025-09-01 1

CPROT O(1) User commands CPROT O(1)

#ifdef ANSI_FUNC

−b Rewrite function definition heads to include both old style and new style declarations separated by

a conditional compilation directive. For example, the program can generate this function defini-

tion:

#ifdef ANSI_FUNC

int

main (int argc, char *argv[])

#else

int

main (argc, argv)

int argc;

char *argv[]

#endif

{

}

−C template

Set the output format for function definitions with parameter comments. The −F and −P options

allow setting the format for prototypes and function definitions.

The format is specified by a template in the form

" int f (a, b)"

but you may replace each space in this string with any number of whitespace characters. For ex-

ample, the option

−F"int f(\n\ta,\n\tb\n\t)"

will produce

int main(

int argc,

char *argv[]

)

−c The parameter comments in the prototypes generated by the −f1 and −f2 options are omitted by

default. Use this option to enable the output of these comments.

−D name[=value]

This option is passed through to the preprocessor and is used to define symbols for use with condi-

tionals such as #ifdef .

−d Omit the definition of the prototype macro used by the −m option.

−E cpp Pipe the input files through the specified C preprocessor command when generating prototypes.

By default, the program uses “/lib/cpp” via a pipe.

−E 0 Do not run the C preprocessor.

−e Output the keyword extern in front of every generated prototype or declaration that has global

scope.

−F template

Set the output format for function definitions as in the “−C” option.

−f n Set the style of generated function prototypes where n is a number from 0 to 3. For example, con-

sider the function definition

main (argc, argv)

int argc;

Version 4.7y 2025-09-01 2

CPROT O(1) User commands CPROT O(1)

char *argv[];

{

}

If the value is 0, then no prototypes are generated. When set to 1, the output is:

int main(/*int argc, char *argv[]*/);

For a value of 2, the output has the form:

int main(int /*argc*/, char */*argv*/[]);

The default value is 3. It produces the full function prototype:

int main(int argc, char *argv[]);

−I directory

This option is passed through to the preprocessor and is used to specify a directory to search for

files that are referenced with #include.

−i By default, cproto only generates declarations for functions and variables having global scope.

This option will output inline declarations as well.

−l Generate text for a lint−library (overrides the “−f” option). The output includes the comment

/* LINTLIBRARY */

Special comments LINT_EXTERN and LINT_PREPRO (a la “VARARGS”) respectively turn on

the “−x” option and copy comment−text to the output (for preprocessing in lint). Use the com-

ment

/* LINT_EXTERN2 */

to include externs defined in the first level of include−files. Use the comment

/* LINT_SHADOWED */

to cause cproto to put “#undef” directives before each lint library declaration (i.e., to avoid con-

flicts with macros that happen to have to hav e the same name as the functions, thus causing syntax

errors).

Note that these special comments are not supported under VAX/VMS, since there is no equivalent

for the “−C” option of the C preprocessor with VAX−C.

−M name

Set the name of the macro used to surround prototype parameter lists when option −m is selected.

The default is “P_”.

−m Put a macro around the parameter list of every generated prototype. For example:

int main P_((int argc, char *argv[]));

−N name

Rather than filling in “void” for functions without parameters, use the given name.

−n Rather than filling in “void” for functions without parameters, use a comment “/*empty*/”.

−O file Specify the name of the error file (default: standard error).

−o file Specify the name of the output file (default: standard output).

−P template

Set the output format for generated prototypes as in the “−C” option.

−p Disable promotion of formal parameters in old style function definitions. By default, parameters

of type char or short in old style function definitions are promoted to type int in the function pro-

totype or converted ANSI C function definition. Parameters of type float get promoted to double

as well.

Version 4.7y 2025-09-01 3

CPROT O(1) User commands CPROT O(1)

−q Do not output any error messages when the program cannot read the file specified in an #include

directive.

−S Output only static declarations.

−s By default, cproto only generates declarations for functions and variables having global scope.

This option will output static declarations as well.

−T Copy type definitions from each file. (Definitions in included−files are copied, unlike the “−l” op-

tion).

−t Convert function definitions from the ANSI C style to the traditional style.

−U name

This option is passed through to the preprocessor and is used to remove any definitions of this

symbol.

−V Print version information.

−v Also output declarations for variables defined in the source.

−X level

This option limits the include−file level from which declarations are extracted by examining the

preprocessor output.

−x This option causes procedures and variables which are declared “extern” to be included in the out-

put.

ENVIRONMENT
The environment variable CPROT O is scanned for a list of options in the same format as the command line

options. Options given on the command line override any corresponding environment option.

BUGS
If an un−tagged struct, union or enum declaration appears in a generated function prototype or converted

function definition, the content of the declaration between the braces is empty.

The program does not pipe the source files through the C preprocessor when it is converting function defini-

tions (i.e., options −a, −b, −t). That is because cproto does the conversion by replacing strings, rather than

by converting to/from lexical tokens. Instead of using the C preprocessor, cproto tries to handle preproces-

sor directives and macros itself, to find type definitions. There are several limitations as a result:

• the search-path for included files contains only “/usr/include” and the directories listed by “-I” options.

• conditional directives (e.g., “#if”) are ignored.

• only macros without parameters are handled.

• some comments in the function definition head are discarded.

The −v option does not generate declarations for variables defined with the extern specifier. This does not

strictly conform to the C language standard but this rule was implemented because include files commonly

declare variables this way.

When the program encounters an error, it usually outputs the not very descriptive message “syntax error”.

(Your configuration may allow the extended error reporting in yyerror.c).

Options that take string arguments only interpret the following character escape sequences:

\n newline

\s space

\t tab

VARARGS comments are not passed through on systems whose C preprocessors do not support this (e.g.,

VAX/VMS, MS−DOS).

AUTHORS
Chin Huang

cthuang@vex.net

Version 4.7y 2025-09-01 4

CPROT O(1) User commands CPROT O(1)

cthuang@interlog.com

Thomas E. Dickey

dickey@invisible−island.net

modifications to support lint library, type−copying, and port to VAX/VMS.

SEE ALSO
cc(1), cpp(1)

Version 4.7y 2025-09-01 5

